830 resultados para Pneumatice Pressure, Distal Radius Fracture, Dynamic Loading, Fracture Healing
Resumo:
When an asphalt mixture is subjected to a destructive compressive load, it experiences a sequence of three deformation stages, as follows: the (1) primary, (2) secondary, and (3) tertiary stages. Most literature research focuses on plastic deformation in the primary and secondary stages, such as prediction of the flow number, which is in fact the initiation of the tertiary stage. However, little research effort has been reported on the mechanistic modeling of the damage that occurs in the tertiary stage. The main objective of this paper is to provide a mechanistic characterizing method for the damage modeling of asphalt mixtures in the tertiary stage. The preliminary study conducted by the writers illustrates that deformation during the tertiary flow of the asphalt mixtures is principally caused by the formation and propagation of cracks, which was signaled by the increase of the phase angle in the tertiary phase. The strain caused by the growth of cracks is the viscofracture strain, which can be obtained by conducting the strain decomposition of the measured total strain in the destructive compressive test. The viscofracture strain is employed in the research reported in this paper to mechanistically characterize the time-dependent fracture (viscofracture) of asphalt mixtures in compression. By using the dissipated pseudostrain energy-balance principle, the damage density and true stress are determined and both are demonstrated to increase with load cycles in the tertiary stage. The increased true stress yields extra viscoplastic strain, which is the reason why the permanent deformation is accelerated by the occurrence of cracks. To characterize the evolution of the viscofracture in the asphalt mixtures in compression, a pseudo J-integral Paris' law in terms of damage density is proposed and the material constants in the Paris' law are determined, which can be employed to predict the fracture of asphalt mixtures in compression. © 2013 American Society of Civil Engineers.
Resumo:
Permanent deformation and fracture may develop simultaneously when an asphalt mixture is subjected to a compressive load. The objective of this research is to separate viscoplasticity and viscofracture from viscoelasticity so that the permanent deformation and fracture of the asphalt mixtures can be individually and accurately characterized without the influence of viscoelasticity. The undamaged properties of 16 asphalt mixtures that have two binder types, two air void contents, and two aging conditions are first obtained by conducting nondestructive creep tests and nondestructive dynamic modulus tests. Testing results are analyzed by using the linear viscoelastic theory in which the creep compliance and the relaxation modulus are modeled by the Prony model. The dynamic modulus and phase angle of the undamaged asphalt mixtures remained constant with the load cycles. The undamaged asphalt mixtures are then used to perform the destructive dynamic modulus tests in which the dynamic modulus and phase angle of the damaged asphalt mixtures vary with load cycles. This indicates plastic evolution and crack propagation. The growth of cracks is signaled principally by the increase of the phase angle, which occurs only in the tertiary stage. The measured total strain is successfully decomposed into elastic strain, viscoelastic strain, plastic strain, viscoplastic strain, and viscofracture strain by employing the pseudostrain concept and the extended elastic-viscoelastic correspondence principle. The separated viscoplastic strain uses a predictive model to characterize the permanent deformation. The separated viscofracture strain uses a fracture strain model to characterize the fracture of the asphalt mixtures in which the flow number is determined and a crack speed index is proposed. Comparisons of the 16 samples show that aged asphalt mixtures with a low air void content have a better performance, resisting permanent deformation and fracture. © 2012 American Society of Civil Engineers.
Resumo:
The focus of this work is to develop and employ numerical methods that provide characterization of granular microstructures, dynamic fragmentation of brittle materials, and dynamic fracture of three-dimensional bodies.
We first propose the fabric tensor formalism to describe the structure and evolution of lithium-ion electrode microstructure during the calendaring process. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Applying this technique to X-ray computed tomography of cathode microstructure, we show that fabric tensors capture the evolution of the inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode.
We then shift focus to the development and analysis of fracture models within finite element simulations. A difficult problem to characterize in the realm of fracture modeling is that of fragmentation, wherein brittle materials subjected to a uniform tensile loading break apart into a large number of smaller pieces. We explore the effect of numerical precision in the results of dynamic fragmentation simulations using the cohesive element approach on a one-dimensional domain. By introducing random and non-random field variations, we discern that round-off error plays a significant role in establishing a mesh-convergent solution for uniform fragmentation problems. Further, by using differing magnitudes of randomized material properties and mesh discretizations, we find that employing randomness can improve convergence behavior and provide a computational savings.
The Thick Level-Set model is implemented to describe brittle media undergoing dynamic fragmentation as an alternative to the cohesive element approach. This non-local damage model features a level-set function that defines the extent and severity of degradation and uses a length scale to limit the damage gradient. In terms of energy dissipated by fracture and mean fragment size, we find that the proposed model reproduces the rate-dependent observations of analytical approaches, cohesive element simulations, and experimental studies.
Lastly, the Thick Level-Set model is implemented in three dimensions to describe the dynamic failure of brittle media, such as the active material particles in the battery cathode during manufacturing. The proposed model matches expected behavior from physical experiments, analytical approaches, and numerical models, and mesh convergence is established. We find that the use of an asymmetrical damage model to represent tensile damage is important to producing the expected results for brittle fracture problems.
The impact of this work is that designers of lithium-ion battery components can employ the numerical methods presented herein to analyze the evolving electrode microstructure during manufacturing, operational, and extraordinary loadings. This allows for enhanced designs and manufacturing methods that advance the state of battery technology. Further, these numerical tools have applicability in a broad range of fields, from geotechnical analysis to ice-sheet modeling to armor design to hydraulic fracturing.
Resumo:
In long-term oral rehabilitation treatments, resistance of provisional crowns is a very important factor, especially in cases of an extensive edentulous distal space. The aim of this laboratorial study was to evaluate an acrylic resin cantilever-type prosthesis regarding the flexural strength of its in-balance portion as a function of its extension variation and reinforcement by two types of fibers (glass and polyaramid), considering that literature is not conclusive on this subject. Each specimen was composed by 3 total crowns at its mesial portion, each one attached to an implant component (abutment), while the distal portion (cantilever) had two crowns. Each specimen was constructed by injecting acrylic resin into a two-part silicone matrix placed on a metallic base. In each specimen, the crowns were fabricated with either acrylic resin (control group) or acrylic resin reinforced by glass (Fibrante, Angelus) or polyaramide (Kevlar 49, Du Pont) fibers. Compression load was applied on the cantilever, in a point located 7, 14 or 21 mm from the distal surface of the nearest crown with abutment, to simulate different extensions. The specimen was fixed on the metallic base and the force was applied until fracture in a universal test machine. Each one of the 9 sub-groups was composed by 10 specimens. Flexural strength means (in kgf) for the distances of 7, 14 and 21 mm were, respectively, 28.07, 8.27 and 6.39 for control group, 31.89, 9.18 and 5.16 for Kevlar 49 and 30.90, 9.31 and 6.86 for Fibrante. Data analysis ANOVA showed statistically significant difference (p<0.05) only regarding cantilever extension. Tukey's test detected significantly higher flexural strength for the 7 mm-distance, followed by 14 and 21 mm. Fracture was complete only on specimens of non-reinforced groups.
Resumo:
Femoral neck fracture without associated trauma following consolidation of a transtrochanteric fracture is a rare event. The authors report a case of transtrochanteric fracture that was treated with PFN and which presented fracturing of the femoral neck two weeks after removal of the device. This occurrence was treated with partial arthroplasty.
Resumo:
The definition of an optimal elastic modulus for a post is controversial. This work hypothesized that the influence of the posts` elastic modulus on dentin stress concentration is dependent on the load direction. The objective was to evaluate, using finite element analysis, the maximum principal stress (sigma(max)) on the root, using posts with different elastic modulus submitted to different loading directions. Nine 3D models were built, representing the dentin root, gutta-percha, a conical post and the cortical bone. The softwares used were: MSC.PATRAN2005r2 (preprocessing) and MSC.Marc2005r2 (processing). Load of 100 N was applied, varying the directions (0 degrees, 45 degrees and 90 degrees) in relation to the post`s long axis. The magnitude and direction of the sigma(max) were recorded. At the 45 degrees and 90 degrees loading, the highest values of sigma(max) were recorded for the lowest modulus posts, on the cervical region, with a direction that suggests debonding of the post. For the 0 degrees loading, the highest values of sigma(max) were recorded for higher modulus posts, on the apical region, and the circumferential direction suggests vertical root fracture. The hypothesis was accepted: the effect of the elastic modulus on the magnitude and direction of the sigma(max) generated on the root was dependent on the loading direction.
Resumo:
Purpose: To evaluate the effects of storage condition and duration on the resistance to fracture of different fiber post systems (and to morphologically assess the post structure before and after storage. Methods: Three types of fiber posts (DT Light Post, GC Post, FRC Postect Plus) were divided in different groups (n=12) according to the storage condition (dry at 37 degrees C; saline water at 37 degrees C; mineral oil at 37 degrees C and storage inside the roots of extracted human teeth immersed in saline water at 37 degrees C and duration (6, 12 months). A universal testing machine loading at a 90 degrees angle was employed for the three-point bending test. The test was carried out until fracture of the post. A 3-way ANOVA and Tukey`s test (alpha= 0.05) were used to compare the effect of the experimental factors on the fracture strength. Two posts of each group were observed before and after the storage using a scanning electron microscope. Results: Storage condition and post type had a significant effect on post fracture strength (P< 0.05). The interaction between these factors was significant (P< 0.05). Water storage significantly decreased the fracture strength, regardless of the post type and the storage duration. Storage inside roots, in oil, and at dry conditions did not significantly affect post fracture strength. SEM micrographs revealed voids between fibers and resin matrix for posts stored in water. Posts stored under the other conditions showed a compact matrix without porosities. (Am J Dent 2009;22:366-370).
Resumo:
SUMMARY: In a randomly selected cohort of Swiss community-dwelling elderly women prospectively followed up for 2.8 +/- 0.6 years, clinical fractures were assessed twice yearly. Bone mineral density (BMD) measured at tibial diaphysis (T-DIA) and tibial epiphysis (T-EPI) using dual-energy X-ray absorptiometry (DXA) was shown to be a valid alternative to lumbar spine or hip BMD in predicting fractures. INTRODUCTION: A study was carried out to determine whether BMD measurement at the distal tibia sites of T-EPI and T-DIA is predictive of clinical fracture risk. METHODS: In a predefined representative cohort of Swiss community-dwelling elderly women aged 70-80 years included in the prospective, multi-centre Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture risk (SEMOF) study, fracture risk profile was assessed and BMD measured at the lumbar spine (LS), hip (HIP) and tibia (T-DIA and T-EPI) using DXA. Thereafter, clinical fractures were reported in a bi-yearly questionnaire. RESULTS: During 1,786 women-years of follow-up, 68 clinical fragility fractures occurred in 61 women. Older age and previous fracture were identified as risk factors for the present fractures. A decrease of 1 standard deviation in BMD values yielded a 1.5-fold (HIP) to 1.8-fold (T-EPI) significant increase in clinical fragility fracture hazard ratio (adjusted for age and previous fracture). All measured sites had comparable performance for fracture prediction (area under the curve range from 0.63 [LS] to 0.68 [T-EPI]). CONCLUSION: Fracture risk prediction with BMD measurements at T-DIA and T-EPI is a valid alternative to BMD measurements at LS or HIP for patients in whom these sites cannot be accessed for clinical, technical or practical reasons.
Resumo:
Background: The prevalence of a low bone mineral density (T-score <-1 SD) in postmenopausal women with a fragility fracture may vary from 70% to less than 50%. In one study (Siris ES. Arch Intern Med. 2004;164:1108-12), the prevalence of osteoporosis was very low at 6.4%. The corresponding values in men are rarely reported. Methods: In a nationwide Swiss survey, all consecutive patients aged 50+ presenting with one or more fractures to the emergency ward, were recruited by 8 participating hospitals (University Hospitals: Basel, Bern, and Lausanne; cantonal hospitals: Fribourg, Luzern, and St Gallen; regional hospitals: Estavayer and Riaz) between 2004 and 2006. Diagnostic workup was collected for descriptive analysis. Results: 3667 consecutive patients with a fragility fracture, 2797 women (73.8 ± 11.6 years) and 870 men (70.0 ± 12.1 years), were included. DXA measurement was performed in 1152 (44%) patients. The mean of the lowest T-score values was -2.34 SD in women and -2.16 SD in men. In the 908 women, the prevalence of osteoporosis and osteopenia according to the fracture type was: sacrum (100%, 0%), rib (100%, 0%), thoracic vertebral (78%, 22%), femur trochanter (67%, 26%), pelvis (66%, 32%), lumbar vertebral (63%, 28%), femoral neck (53%, 34%), femur shaft (50%, 50%), proximal humerus (50%, 34%), distal forearm (41%, 45%), tibia proximal (41%, 31%), malleolar lateral (28%, 46%), malleolar median (13%, 47%). The corresponding percentages in the 244 men were: distal forearm (70%, 19%), rib (63%, 11%), pelvis (60%, 20%), malleolar median (60%, 32%), femur trochanter (48%, 31%), thoracic vertebral (47%, 53%), lumbar vertebral (43%, 36%), proximal humerus (40%, 43%), femoral neck (28%, 55%), tibia proximal (26%, 36%), malleolar lateral (18%, 56%). Conclusion: The probability of underlying osteoporosis or osteopenia in men and women aged 50+ who experienced a fragility fracture was beyond 75% in fractures of the sacrum, pelvis, spine, femur, proximal humerus and distal forearm. The medial and lateral malleolar fractures had the lowest predictive value in women, not in men.
Resumo:
A 49-year-old man suffered a closed oblique fracture of the middle third of his left femur. Closed reduction and internal fixation by intramedullary (IM) nailing were performed. Per-operative fluoroscopic imaging and initial postoperative X-rays were judged normal and the patient followed the usual rehabilitation protocol. At 3-month follow-up the patient still demonstrated poor knee function and pain. A plain X-ray and a CT scan of the left knee revealed a displaced fracture of the medial femoral condyle. Analysis of the postoperative imaging suggests that the fracture occurred during the insertion of the IM nail. The nail possibly hit the Steinmann traction pin in the distal femur causing the medial condyle fracture. The patient was reoperated; open reduction and internal plate and screw fixation were performed with satisfactory clinical progress postoperatively. The description and illustration of this case is intended to make trauma surgeons aware of this rare but serious complication of IM femoral nailing.
Resumo:
Introduction: Non-ossifying fibromas are common benign bone tumors of children and young adults. They are usually single, asymptomatic and regress spontaneously in adulthood. Some rare cases of pathologic fractures have been described. Jaffé-Campanacci syndrome is the association of multiple non-ossifying fibromas, "café-au-lait" spots and some degree of type 1 neurofibromatosis. While the relationship between the two entities remains unclear, there seems to be some genetic similarities (partial or complete deletion of the gene NF1). Case Report: A 17 yo female patient with a neurofibromatosis type 1 was referred to our tertiary centre with a pathologic fracture of the distal femur through a non-ossifying fibroma. She had a slight mental retardation and "café-au-lait" spots. Imaging revealed multiple typical non-ossifying fibromas of both distal femurs and proximal tibias. There was no impending fracture of the controlateral side, and no other findings on thoraco-abdominal CT scanner. The fracture was treated by minimal invasive plate osteosynthesis. Histological analysis of tissue samples taken during the intervention confirmed the histologic diagnosis of non-ossifying fibroma. The fracture healed eventless and the patient returned to work after 3 months. At 12 months follow-up, the patient remained pain-free. Imaging revealed remodelling of the lesions. Conclusion: Jaffé-Campanacci syndrome is an extremely rare cause of pathologic femur fracture. These fractures can be treated like any other, and good outcome is expected. There is still no consensus in regards to definition of the disease and its relationship with type 1 neurofibromatosis.
Resumo:
Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.
Resumo:
This paper presents a new technique and two algorithms to bulk-load data into multi-way dynamic metric access methods, based on the covering radius of representative elements employed to organize data in hierarchical data structures. The proposed algorithms are sample-based, and they always build a valid and height-balanced tree. We compare the proposed algorithm with existing ones, showing the behavior to bulk-load data into the Slim-tree metric access method. After having identified the worst case of our first algorithm, we describe adequate counteractions in an elegant way creating the second algorithm. Experiments performed to evaluate their performance show that our bulk-loading methods build trees faster than the sequential insertion method regarding construction time, and that it also significantly improves search performance. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two birds were presented with malunion fractures. The first was a young toco toucan (Ramphastos toco) with malunion of the tarsometatarsus that was treated by an opening-corrective osteotomy and an acrylic-pin external skeletal fixator (type II) to stabilize the osteotomy. The second bird was m adult southern caracara (Caracara plancus) with radial and ulnar malunion that was treated by closing-wedge osteotomies. Stabilization of the osteotomy sites was accomplished through 1 bone plate fixed cranially on the ulna with 6 cortical screws and an interfragmentary single wire in radius. In both cases, the malunion was corrected, but the manus of the southern caracara was amputated because of carpal joint luxation that induced malposition of the feathers.