999 resultados para Player detection
Resumo:
Background: The regulation of plasminogen activation is a key element in controlling proteolytic events in the extracellular matrix. Our previous studies had demonstrated that in inflamed gingival tissues, tissue-type plasminogen activator (t-PA) is significantly increased in the extracellular matrix of the connective tissue and that interleukin 1β (IL-1β) can up regulate the level of t-PA and plasminogen activator inhibitor-2 (PAI-2) synthesis by human gingival fibroblasts. Method: In the present study, the levels of t-PA and PAI-2 in gingival crevicular fluid (GCF) were measured from healthy, gingivitis and periodontitis sites and compared before and after periodontal treatment. Crevicular fluid from106 periodontal sites in 33 patients were collected. 24 sites from 11 periodontitis patients received periodontal treatment after the first sample collection and post-treatment samples were collected 14 days after treatment. All samples were analyzed by enzyme-linked immunosorbent assay (ELISA) for t-PA and PAI-2. Results: The results showed that significantly high levels of t-PA and PAI-2 in GCF were found in the gingivitis and periodontitis sites. Periodontal treatment led to significant decreases of PAI-2, but not t-PA, after 14 days. A significant positive linear correlation was found between t-PA and PAI-2 in GCF (r=0.80, p<0.01). In the healthy group, different sites from within the same subject showed little variation of t-PA and PAI-2 in GCF. However, the gingivitis and periodontitis sites showed large variation. These results suggest a good correlation between t-PA and PAI-2 with the severity of periodontal conditions. Conclusion: This study indicates that t-PA and PAI-2 may play a significant rôle in the periodontal tissue destruction and tissue remodeling and that t-PA and PAI-2 in GCF may be used as clinical markers to evaluate the periodontal diseases and assess treatment.
Resumo:
The increasing popularity of video consumption from mobile devices requires an effective video coding strategy. To overcome diverse communication networks, video services often need to maintain sustainable quality when the available bandwidth is limited. One of the strategy for a visually-optimised video adaptation is by implementing a region-of-interest (ROI) based scalability, whereby important regions can be encoded at a higher quality while maintaining sufficient quality for the rest of the frame. The result is an improved perceived quality at the same bit rate as normal encoding, which is particularly obvious at the range of lower bit rate. However, because of the difficulties of predicting region-of-interest (ROI) accurately, there is a limited research and development of ROI-based video coding for general videos. In this paper, the phase spectrum quaternion of Fourier Transform (PQFT) method is adopted to determine the ROI. To improve the results of ROI detection, the saliency map from the PQFT is augmented with maps created from high level knowledge of factors that are known to attract human attention. Hence, maps that locate faces and emphasise the centre of the screen are used in combination with the saliency map to determine the ROI. The contribution of this paper lies on the automatic ROI detection technique for coding a low bit rate videos which include the ROI prioritisation technique to give different level of encoding qualities for multiple ROIs, and the evaluation of the proposed automatic ROI detection that is shown to have a close performance to human ROI, based on the eye fixation data.
Resumo:
The application of nanotechnology products has increased significantly in recent years. With their broad range of applications, including electronics, food and agriculture, power and energy, scientific instruments, clothing, cosmetics, buildings, biomedical and health, etc (Catanzariti, 2008), nanomaterials are an indispensible part of human life.
Resumo:
Background: Right-to-left shunting via a patent foramen ovale (PFO) has a recognized association with embolic events in younger patients. The use of agitated saline contrast imaging (ASCi) for detecting atrial shunting is well documented, however optimal technique is not well described. The purpose of this study is to assess the efficacy and safety of ASCi via TTE for assessment of right-to-left atrial communication in a large cohort of patients. Method: A retrospective review was undertaken of 1162 consecutive transthoracic (TTE) ASCi studies, of which 195 had also undergone clinically indicated transesophageal (TEE) echo. ASCi shunt results were compared with color flow imaging (CFI) and the role of provocative maneuvers (PM) assessed. Results: 403 TTE studies (35%) had paradoxical shunting seen during ASCi. Of these, 48% were positive with PM only. There was strong agreement between TTE ASCi and reported TEE findings (99% sensitivity, 85% specificity), with six false positive and two false negative results. In hindsight, the latter were likely due to suboptimal right atrial opacification, and the former due to transpulmonary shunting. TTE CFI was found to be insensitive (22%) for the detection of a PFO compared with TTE ASCi. Conclusions: TTE ASCi is minimally invasive and highly accurate for the detection of right-to-left atrial communication when PM are used. TTE CFI was found to be insensitive for PFO screening. It is recommended that TTE ASCi should be considered the initial diagnostic tool for the detection of PFO in clinical practice. A dedicated protocol should be followed to ensure adequate agitated saline contrast delivery and performance of provocative maneuvers.
Resumo:
This work-in-progress paper presents an ensemble-based model for detecting and mitigating Distributed Denial-of-Service (DDoS) attacks, and its partial implementation. The model utilises network traffic analysis and MIB (Management Information Base) server load analysis features for detecting a wide range of network and application layer DDoS attacks and distinguishing them from Flash Events. The proposed model will be evaluated against realistic synthetic network traffic generated using a software-based traffic generator that we have developed as part of this research. In this paper, we summarise our previous work, highlight the current work being undertaken along with preliminary results obtained and outline the future directions of our work.
Resumo:
Cognitive radio is an emerging technology proposing the concept of dynamic spec- trum access as a solution to the looming problem of spectrum scarcity caused by the growth in wireless communication systems. Under the proposed concept, non- licensed, secondary users (SU) can access spectrum owned by licensed, primary users (PU) so long as interference to PU are kept minimal. Spectrum sensing is a crucial task in cognitive radio whereby the SU senses the spectrum to detect the presence or absence of any PU signal. Conventional spectrum sensing assumes the PU signal as ‘stationary’ and remains in the same activity state during the sensing cycle, while an emerging trend models PU as ‘non-stationary’ and undergoes state changes. Existing studies have focused on non-stationary PU during the transmission period, however very little research considered the impact on spectrum sensing when the PU is non-stationary during the sensing period. The concept of PU duty cycle is developed as a tool to analyse the performance of spectrum sensing detectors when detecting non-stationary PU signals. New detectors are also proposed to optimise detection with respect to duty cycle ex- hibited by the PU. This research consists of two major investigations. The first stage investigates the impact of duty cycle on the performance of existing detec- tors and the extent of the problem in existing studies. The second stage develops new detection models and frameworks to ensure the integrity of spectrum sensing when detecting non-stationary PU signals. The first investigation demonstrates that conventional signal model formulated for stationary PU does not accurately reflect the behaviour of a non-stationary PU. Therefore the performance calculated and assumed to be achievable by the conventional detector does not reflect actual performance achieved. Through analysing the statistical properties of duty cycle, performance degradation is proved to be a problem that cannot be easily neglected in existing sensing studies when PU is modelled as non-stationary. The second investigation presents detectors that are aware of the duty cycle ex- hibited by a non-stationary PU. A two stage detection model is proposed to improve the detection performance and robustness to changes in duty cycle. This detector is most suitable for applications that require long sensing periods. A second detector, the duty cycle based energy detector is formulated by integrat- ing the distribution of duty cycle into the test statistic of the energy detector and suitable for short sensing periods. The decision threshold is optimised with respect to the traffic model of the PU, hence the proposed detector can calculate average detection performance that reflect realistic results. A detection framework for the application of spectrum sensing optimisation is proposed to provide clear guidance on the constraints on sensing and detection model. Following this framework will ensure the signal model accurately reflects practical behaviour while the detection model implemented is also suitable for the desired detection assumption. Based on this framework, a spectrum sensing optimisation algorithm is further developed to maximise the sensing efficiency for non-stationary PU. New optimisation constraints are derived to account for any PU state changes within the sensing cycle while implementing the proposed duty cycle based detector.
Resumo:
Automated airborne collision-detection systems are a key enabling technology for facilitat- ing the integration of unmanned aerial vehicles (UAVs) into the national airspace. These safety-critical systems must be sensitive enough to provide timely warnings of genuine air- borne collision threats, but not so sensitive as to cause excessive false-alarms. Hence, an accurate characterisation of detection and false alarm sensitivity is essential for understand- ing performance trade-offs, and system designers can exploit this characterisation to help achieve a desired balance in system performance. In this paper we experimentally evaluate a sky-region, image based, aircraft collision detection system that is based on morphologi- cal and temporal processing techniques. (Note that the examined detection approaches are not suitable for the detection of potential collision threats against a ground clutter back- ground). A novel collection methodology for collecting realistic airborne collision-course target footage in both head-on and tail-chase engagement geometries is described. Under (hazy) blue sky conditions, our proposed system achieved detection ranges greater than 1540m in 3 flight test cases with no false alarm events in 14.14 hours of non-target data (under cloudy conditions, the system achieved detection ranges greater than 1170m in 4 flight test cases with no false alarm events in 6.63 hours of non-target data). Importantly, this paper is the first documented presentation of detection range versus false alarm curves generated from airborne target and non-target image data.
Resumo:
A PCR assay, using three primer pairs, was developed for the detection of Ureaplasma urealyticum, parvo biovar, mba types 1, 3, and 6, in cultured clinical specimens. The primer pairs were designed by using the polymorphic base positions within a 310- to 311-bp fragment of the 5* end and upstream control region of the mba gene. The specificity of the assay was confirmed with reference serovars 1, 3, 6, and 14 and by the amplified-fragment sizes (81 bp for mba 1, 262 bp for mba 3, and 193 bp for mba 6). A more sensitive nested PCR was also developed. This involved a first-step PCR, using the primers UMS-125 and UMA226, followed by the nested mba-type PCR described above. This nested PCR enabled the detection and typing of small numbers of U. urealyticum cells, including mixtures, directly in original clinical specimens. By using random amplified polymorphic DNA (RAPD) PCR with seven arbitrary primers, we were also able to differentiate the two biovars of U. urealyticum and to identify 13 RAPD-PCR subtypes. By applying these subtyping techniques to clinical samples collected from pregnant women, we established that (i) U. urealyticum is often a persistent colonizer of the lower genital tract from early midtrimester until the third trimester of pregnancy, (ii) mba type 6 was isolated significantly more often (P 5 0.048) from women who delivered preterm than from women who delivered at term, (iii) no particular ureaplasma subtype(s) was associated with placental infections and/or adverse pregnancy outcomes, and (iv) the ureaplasma subtypes most frequently isolated from women were the same subtypes most often isolated from infected placentas.
Resumo:
This paper develops and applies a multi-criteria procedure, incorporating changes in natural frequencies, modal flexibility and the modal strain energy, for damage detection in slab-on-girder bridges. The proposed procedure is first validated through experimental testing of a model bridge. Numerically simulated modal data obtained through finite element analyses are then used to evaluate the vibration parameters before and after damage and used as the indices for assessment of the state of structural health. The procedure is illustrated by its application to full scale slab-on-girder bridges under different damage scenarios involving single and multiple damages on the deck and girders.
Resumo:
The rapid increase in the deployment of CCTV systems has led to a greater demand for algorithms that are able to process incoming video feeds. These algorithms are designed to extract information of interest for human operators. During the past several years, there has been a large effort to detect abnormal activities through computer vision techniques. Typically, the problem is formulated as a novelty detection task where the system is trained on normal data and is required to detect events which do not fit the learned `normal' model. Many researchers have tried various sets of features to train different learning models to detect abnormal behaviour in video footage. In this work we propose using a Semi-2D Hidden Markov Model (HMM) to model the normal activities of people. The outliers of the model with insufficient likelihood are identified as abnormal activities. Our Semi-2D HMM is designed to model both the temporal and spatial causalities of the crowd behaviour by assuming the current state of the Hidden Markov Model depends not only on the previous state in the temporal direction, but also on the previous states of the adjacent spatial locations. Two different HMMs are trained to model both the vertical and horizontal spatial causal information. Location features, flow features and optical flow textures are used as the features for the model. The proposed approach is evaluated using the publicly available UCSD datasets and we demonstrate improved performance compared to other state of the art methods.
Resumo:
The gold standard method for detecting chlamydial infection in domestic and wild animals is PCR, but the technique is not suited to testing animals in the field when a rapid diagnosis is frequently required. The objective of this study was to compare the results of a commercially available enzyme immunoassay test for Chlamydia against a quantitative Chlamydia pecorum-specific PCR performed on swabs collected from the conjunctival sac, nasal cavity and urogenital sinuses of naturally infected koalas (Phascolarctos cinereus). The level of agreement for positive results between the two assays was low (43.2%). The immunoassay detection cut-off was determined as approximately 400 C. pecorum copies, indicating that the test was sufficiently sensitive to be used for the rapid diagnosis of active chlamydial infections.
Resumo:
This paper presents an efficient face detection method suitable for real-time surveillance applications. Improved efficiency is achieved by constraining the search window of an AdaBoost face detector to pre-selected regions. Firstly, the proposed method takes a sparse grid of sample pixels from the image to reduce whole image scan time. A fusion of foreground segmentation and skin colour segmentation is then used to select candidate face regions. Finally, a classifier-based face detector is applied only to selected regions to verify the presence of a face (the Viola-Jones detector is used in this paper). The proposed system is evaluated using 640 x 480 pixels test images and compared with other relevant methods. Experimental results show that the proposed method reduces the detection time to 42 ms, where the Viola-Jones detector alone requires 565 ms (on a desktop processor). This improvement makes the face detector suitable for real-time applications. Furthermore, the proposed method requires 50% of the computation time of the best competing method, while reducing the false positive rate by 3.2% and maintaining the same hit rate.
Resumo:
In this paper we demonstrate how to monitor a smartphone running Symbian operating system and Windows Mobile in order to extract features for anomaly detection. These features are sent to a remote server because running a complex intrusion detection system on this kind of mobile device still is not feasible due to capability and hardware limitations. We give examples on how to compute relevant features and introduce the top ten applications used by mobile phone users based on a study in 2005. The usage of these applications is recorded by a monitoring client and visualized. Additionally, monitoring results of public and self-written malwares are shown. For improving monitoring client performance, Principal Component Analysis was applied which lead to a decrease of about 80 of the amount of monitored features.
Resumo:
Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a pixel-by-pixel basis, where an independent decision is made for each pixel. A general limitation of such processing is that rich contextual information is not taken into account. We propose a block-based method capable of dealing with noise, illumination variations, and dynamic backgrounds, while still obtaining smooth contours of foreground objects. Specifically, image sequences are analyzed on an overlapping block-by-block basis. A low-dimensional texture descriptor obtained from each block is passed through an adaptive classifier cascade, where each stage handles a distinct problem. A probabilistic foreground mask generation approach then exploits block overlaps to integrate interim block-level decisions into final pixel-level foreground segmentation. Unlike many pixel-based methods, ad-hoc postprocessing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed approach obtains on average better results (both qualitatively and quantitatively) than several prominent methods. We furthermore propose the use of tracking performance as an unbiased approach for assessing the practical usefulness of foreground segmentation methods, and show that the proposed approach leads to considerable improvements in tracking accuracy on the CAVIAR dataset.