845 resultados para Plastic sheets
Resumo:
Polyculture is traditionally a low-input agricultural system and is important in many developing countries. Polycultures of interplanted crops often support fewer pests at lower densities than monoculture and tend to increase number of natural enemies. Also Yellow Sticky Plastic Sheet Traps have proved useful for trapping aphids. A field study was conducted to study the effectiveness of these potential pest management techniques along with the partially resistant (Cardinal) and susceptible (Desiree) potato cultivars, by using their different combinations for the management of Myzus persicae (Sulzer). Berseem, Trifolium alexandrinum (L.) (family: Leguminosae) was used for intercropping with potatoes. The different combinations (treatments) used in this study were: 1) Cardinal-berseem mixed cropping+yellow sticky plastic sheet traps 2) Cardinal-berseem mixed cropping 3) Cardinal+yellow sticky plastic sheet traps 4) Cardinal separately+berseem (as land area equivalents in relation to the mixed cropping treatments) 5) Cardinal (sole crop). Treatments 6-10 were the same treatments, but with Desiree as the potato cultivar. All these treatments were used to evaluate their effects as management techniques for M. persicae, their percent parasitism, percent emergence rate of the parasitoid, Aphidius matricariae Haliday and yield of Cardinal and Desiree. Mixed cropping of Cardinal and berseem together with the yellow sticky plastic sheet traps reduced aphids by over 90% compared with numbers on the sole Cardinal crop. This combination proved in this experiment the most effective for reducing the aphid populations as compared with all other treatments. Maximum percent parasitism i.e. 6.97 and 6.94% (almost double that in the other treatments) was recorded in the potato berseem mixed cropping, with and without traps respectively. In the same two treatments, yield was increased significantly as compared with all other treatments. However no significant effects of any of the variable was evident on the percent emergence of A. matricariae.
Resumo:
The crystal structure of a terminally protected tripeptide Boc-Leu-Aib-beta-Ala-OMe 1 containing non-coded amino acids reveals that it adopts a beta-turn structure, which sell-assembles to form a supramolecular beta-sheet via non-covalent interactions. The SEM image of peptide 1 exhibits amyloid-like fibrillar morphology in the solid state. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The terminally protected tripeptide Boc-Ala(1)-Leu(2)-Ala(3)-OMe 1 forms antiparallel hydrogen-bonded dimers of two different conformers in the asymmetric unit and the individual dimers then self-associate to form supramolecular beta-sheet structures in crystals and amyloid-like fibrils in the solid state.
Resumo:
A new 3-D zinc phosphate, [C5N2H14][Zn-2(PO3(OH))(3)], has been synthesised under solvothermal conditions in the presence of 1-methylpiperazine. The structure, determined by single-crystal X-ray diffraction at 293 K (RMM = 520.9, orthorhombic, space group P2(1)2(1)2(1); a = 10.0517(2) &ANGS;, b = 10.4293(2) &ANGS; and c = 14.9050(5) &ANGS;; V = 1562.52 &ANGS;(3); Z = 4; R(F) = 2.60%, wR(F) = 2.93%), consists of vertex linked ZnO4 and PO3(OH) tetrahedra assembled into (4.8) net sheets which in turn are linked through further PO3(OH) units to generate a 3-D framework. 1-Methylpiperazinium cations reside within the 3-D channel system, held in place by a strong network of hydrogen bonds. The (4.8) net sheets occur in a number of zeolite structures e.g. ABW and GIS and related zinc phosphate phases. © 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
Resumo:
Yellow (CuCN)(2)[(CuCN)(2)(mu-4,4'-bpy)], formed in the hydrothermal reaction of CuCN with 4,4'-bipyridine at 453 K, contains two types of infinite CuCN chains. One set of CuCN chains is linked by 4,4'-bpy ligands to form almost flat sheets of composition [(CuCN)(2)(mu-4,4'-bpy)]. Holes in these sheets are aligned to allow pairs of approximately linear, infinite -(CuCN)- chains to thread through them. The closest interatomic approach between copper atoms in the threading chains and host sheets (similar to2.74 Angstrom) does not appear to represent a significant covalent bond as it leads to only a small distortion of the -(CuCN)- chains from linearity The relationship of this material to the previously determined structures of the host [(CuCN)(2)(mu-4,4'-bpy)] sheets and (CuCN)(3)[(CuCN)(2)(mu-4,4'-bPY)](2), in which these sheets are threaded by single -(CuCN)- chains, is discussed.
Resumo:
Three supramolecular complexes of Co(II) using SCN-/SeCN- in combination with 4,4'-dipyridyl-N,N'-dioxide (dpyo), i.e., {[Co(SCN)(2)(dpyo)(2)].(dpyo)}(n) ( 1), {[Co(SCN)(2)(dpyo)(H2O)(2)].(H2O)}(n) ( 2), {[Co(SeCN)(2)(dpyo)(H2O)(2)]center dot(H2O)}(n) ( 3), have been synthesized and characterized by single-crystal X-ray analysis. Complex 1 is a rare example of a dpyo bridged two-dimensional (2D) coordination polymer, and pi-stacked dpyo supramolecular rods are generated by the lattice dpyo, passing through the rhombic grid of stacked layers, resulting in a three-dimensional (3D) superstructure. Complexes 2 and 3 are isomorphous one-dimensional (1D) coordination polymers [-Co-dpyo-Co-] that undergo self-assembly leading to a bilayer architecture derived through an R-2(2)(8) H-bonding synthon between coordinated water and dpyo oxygen. A reinvestigation of coordination polymers [Mn(SCN)(2)(dpyo)( H2O)(MeOH)](n) ( 4) and {[Fe(SCN)(2)(dpyo)(H2O)(2)]center dot(H2O)}(n) ( 5) reported recently by our group [ Manna et al. Indian J. Chem. 2006, 45A, 1813] reveals brick wall topology rather than bilayer architecture is due to the decisive role of S center dot center dot center dot S/Se center dot center dot center dot Se interactions in determining the helical nature in 4 and 5 as compared to zigzag polymeric chains in 2 and 3, although the same R-2(2)(8) synthon is responsible for supramolecular assembly in these complexes.
Resumo:
The hydrothermal reactions of Ni(NO3)(2).6H(2)O, disodium fumarate (fum) and 1,2-bis(4-pyridyl)ethane (bpe)/1,3-bis(4-pyridyl) propane (bpp) in aqueous-methanol medium yield one 3-D and one 2-D metal-organic hybrid material, [Ni(fum)(bpe)] (1) and [Ni(fum)(bpp)(H2O)] (2), respectively. Complex 1 possesses a novel unprecedented structure, the first example of an "unusual mode" of a five-fold distorted interpenetrated network with metal-ligand linkages where the four six-membered windows in each adamantane-type cage are different. The structural characterization of complex 2 evidences a buckled sheet where nickel ions are in a distorted octahedral geometry, with two carboxylic groups, one acting as a bis-chelate, the other as a bis-monodentate ligand. The metal ion completes the coordination sphere through one water molecule and two bpp nitrogens in cis position. Variable-temperature magnetic measurements of complexes 1 and 2 reveal the existence of very weak antiferromagnetic intramolecular interactions and/or the presence of single-ion zero field splitting (D) of isolated Ni-II ions in both the compounds. Experimentally, both the J parameters are close, comparable and very small. Considering zero-field splitting of Ni-II, the calculated D values are in agreement with values reported in the literature for Ni-II ions. Complex 3, [{Co(phen)}(2)(fum)(2)] (phen=1,10-phenanthroline) is obtained by diffusing methanolic solution of 1,10-phenanthroline on an aqueous layer of disodium fumarate and Co(NO3)(2).6H(2)O. It consists of dimeric Co-II(phen) units, doubly bridged by carboxylate groups in a distorted syn-syn fashion. These fumarate anions act as bis-chelates to form corrugated sheets. The 2D layer has a (4,4) topology, with the nodes represented by the centres of the dimers. The magnetic data were fitted ignoring the very weak coupling through the fumarate pathway and using a dimer model.
Resumo:
We have described here the self-assembling properties of the synthetic tripeptides Boc-Ala(1)-Aib(2) -Val (3)-OMe 1, BocAla(l)-Aib(2)-Ile(3)-OMe 2 and Boc-Ala(l)-Gly(2)-Val(3)-OMe 3 (Aib=alpha-arnino isobutyric acid, beta-Ala=beta-alanine) which have distorted beta-turn conformations in their respective crystals. These turn-forming tripeptides self-assemble to form supramolecular beta-sheet structures through intermolecular hydrogen bonding and other noncovalent interactions. The scanning electron micrographs of these peptides revealed that these compounds form amyloid-like fibrils, the causative factor for many neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Prion-related encephalopathies. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A new 3-D zinc phosphate, [C5N2H14][Zn-2(PO3(OH))(3)], has been synthesised under solvothermal conditions in the presence of 1-methylpiperazine. The structure, determined by single-crystal X-ray diffraction at 293 K (RMM = 520.9, orthorhombic, space group P2(1)2(1)2(1); a = 10.0517(2) &ANGS;, b = 10.4293(2) &ANGS; and c = 14.9050(5) &ANGS;; V = 1562.52 &ANGS;(3); Z = 4; R(F) = 2.60%, wR(F) = 2.93%), consists of vertex linked ZnO4 and PO3(OH) tetrahedra assembled into (4.8) net sheets which in turn are linked through further PO3(OH) units to generate a 3-D framework. 1-Methylpiperazinium cations reside within the 3-D channel system, held in place by a strong network of hydrogen bonds. The (4.8) net sheets occur in a number of zeolite structures e.g. ABW and GIS and related zinc phosphate phases. © 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
Resumo:
A radiometric analysis of the light coupled by optical fiber amplitude modulating extrinsic-type reflectance displacement sensors is presented. Uncut fiber sensors show the largest range but a smaller responsivity. Single cut fiber sensors exhibit an improvement in responsivity at the expense of range. A further increase in responsivity as well as a reduction in the operational range is obtained when the double cut sensor configuration is implemented. The double cut configuration is particularly suitable in applications where feedback action is applied to the moving reflector surface. © 2000 American Institute of Physics.
Resumo:
A plastic optical fibre reflectance sensor that makes full use of the critical angle of the fibres is implemented to monitor dew formation on a Peltier-cooled reflector surface. The optical configuration permits isolation of optoelectronic components from the sensing head and better light coupling between the reflector and the detecting fibre, giving a better signal of the onset of dew formation on the reflector. Continuous monitoring of the rate of change in reflectance as well as the absolute reflectance signals, the use of a novel polymethyl-methacrylate-coated hydrophobic film reflector on the Peltier element and the application of feedback around the point of dew formation, further reduces the possibility of contamination of the sensor head. Under closed-loop operation, the sensor is capable of cycling around the point of dew formation at a frequency of 2.5 Hz.
Resumo:
Synthetic pyrethroid insecticides are degraded almost entirely by ultraviolet (UV)-catalysed oxidation. A bioassay using the beetle Tribolium confusum duVal caged on bandages soaked in 0.04% a.i. cypermethrin showed large differences in residual insecticide-life under three plastic films available for cladding polytunnels. Cypermethrin exposed to a UV film that transmitted 70% of UVB and 80% of UVA killed all beetles for 8 weeks, compared to only 3 weeks for cypermethrin exposed in a clear plastic envelope. Cypermethrin under a UV-absorbing film that reduced the transmission of UVB and UVA to 14% and 50%, respectively, gave a complete kill for 17 weeks. Reducing the transmission of UVB to virtually zero, and that of UVA to only 3%, using a UV-opaque film prolonged the effective life of the cypermethrin residue to 26 weeks, and some beetles were still killed for a further 11 weeks. Even after this time, beetles exposed to cypermethrin from the UV-opaque treatment were still affected by the insecticide, and only showed near-normal mobility after 24 months of pesticide exposure to the UV-opaque film. These results have implications for the recommended intervals between cypermethrin treatment and crop harvest, and on the time of introduction of insect-based biological control agents, when UV-opaque films are used in commercial horticulture.
Resumo:
We compare the use of plastically compressed collagen gels to conventional collagen gels as scaffolds onto which corneal limbal epithelial cells (LECs) are seeded to construct an artificial corneal epithelium. LECs were isolated from bovine corneas (limbus) and seeded onto either conventional uncompressed or novel compressed collagen gels and grown in culture. Scanning electron microscopy (SEM) results showed that fibers within the uncompressed gel were loose and irregularly ordered, whereas the fibers within the compressed gel were densely packed and more evenly arranged. Quantitative analysis of LECs expansion across the surface of the two gels showed similar growth rates (p > 0.05). Under SEM, the LECs, expanded on uncompressed gels, showed a rough and heterogeneous morphology, whereas on the compressed gel, the cells displayed a smooth and homogeneous morphology. Transmission electron microscopy (TEM) results showed the compressed scaffold to contain collagen fibers of regular diameter and similar orientation resembling collagen fibers within the normal cornea. TEM and light microscopy also showed that cell–cell and cell–matrix attachment, stratification, and cell density were superior in LECs expanded upon compressed collagen gels. This study demonstrated that the compressed collagen gel was an excellent biomaterial scaffold highly suited to the construction of an artificial corneal epithelium and a significant improvement upon conventional collagen gels.