973 resultados para Plant-fungi interactions


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Almost all stages of a plant pathogen life cycle are potentially density dependent. At small scales and short time spans appropriate to a single-pathogen individual, density dependence can be extremely strong, mediated both by simple resource use, changes in the host due to defence reactions and signals between fungal individuals. In most cases, the consequences are a rise in reproductive rate as the pathogen becomes rarer, and consequently stabilisation of the population dynamics; however, at very low density reproduction may become inefficient, either because it is co-operative or because heterothallic fungi do not form sexual spores. The consequence will be historically determined distributions. On a medium scale, appropriate for example to several generations of a host plant, the factors already mentioned remain important but specialist natural enemies may also start to affect the dynamics detectably. This could in theory lead to complex (e.g. chaotic) dynamics, but in practice heterogeneity of habitat and host is likely to smooth the extreme relationships and make for more stable, though still very variable, dynamics. On longer temporal and longer spatial scales evolutionary responses by both host and pathogen are likely to become important, producing patterns which ultimately depend on the strength of interactions at smaller scales.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Successful pest management is often hindered by the inherent complexity of the interactions of a pest with its environment. The use of genetically characterized model plants can allow investigation of chosen aspects of these interactions by limiting the number of variables during experimentation. However, it is important to study the generic nature of these model systems if the data generated are to be assessed in a wider context, for instance, with those systems of commercial significance. This study assesses the suitability of Arabidopsis thaliana (L.) Heynh. (Brassicaceae) as a model host plant to investigate plant-herbivore-natural enemy interactions, with Plutella xylostella (L.) (Lepidoptera: Plutellidae), the diamondback moth, and Cotesia plutellae (Kurdjumov) (Hymenoptera: Braconidae), a parasitoid of P. xylostella. The growth and development of P. xylostella and C. plutellae on an A. thaliana host plant (Columbia type) were compared to that on Brassica rapa var. pekinensis (L.) (Brassicaceae), a host crop that is widely cultivated and also commonly used as a laboratory host for P. xylostella rearing. The second part of the study investigated the potential effect of the different A. thaliana background lines, Columbia and Landsberg (used in wider scientific studies), on growth and development of P. xylostella and C. plutellae. Plutella xylostella life history parameters were found generally to be similar between the host plants investigated. However, C. plutellae were more affected by the differences in host plant. Fewer adult parasitoids resulted from development on A. thaliana compared to B. rapa, and those that did emerge were significantly smaller. Adult male C. plutellae developing on Columbia were also significantly smaller than those on Landsberg A. thaliana.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Current research into indirect phytopathogen–herbivore interactions (i.e., interactions mediated by the host plant) is carried out in two largely independent directions: ecological/mechanistic and molecular. We investigate the origin of these approaches and their strengths and weaknesses. Ecological studies have determined the effect of herbivores and phytopathogens on their host plants and are often correlative: the need for long-term manipulative experiments is pressing. Molecular/cellular studies have concentrated on the role of signaling pathways for systemic induced resistance, mainly involving salicylic acid and jasmonic acid, and more recently the cross-talk between these pathways. This cross-talk demonstrates how interactions between signaling mechanisms and phytohormones could mediate plant–herbivore–pathogen interactions. A bridge between these approaches may be provided by field studies using chemical induction of defense, or investigating whole-organism mechanisms of interactions among the three species. To determine the role of phytohormones in induced resistance in the field, researchers must combine ecological and molecular methods. We discuss how these methods can be integrated and present the concept of “kaleidoscopic defense.” Our recent molecular-level investigations of interactions between the herbivore Gastrophysa viridula and the rust fungus Uromyces rumicis on Rumex obtusifolius, which were well studied at the mechanistic and ecological levels, illustrate the difficulty in combining these different approaches. We suggest that the choice of the right study system (possibly wild relatives of model species) is important, and that molecular studies must consider the environmental conditions under which experiments are performed. The generalization of molecular predictions to ecologically realistic settings will be facilitated by “middle-ground studies” concentrating on the outcomes of the interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The indolines and thionins are basic, amphiphilic and cysteine-rich proteins found in cereals; puroindoline-a (Pin-a) and β-purothionin (β-Pth) are members of these families in wheat (Triticum aestivum). Pin-a and β-Pth have been suggested to play a significant role in seed defence against microbial pathogens, making the interaction of these proteins with model bacterial membranes an area of potential interest. We have examined the binding of these proteins to lipid monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) using a combination of neutron reflectometry, Brewster angle microscopy, and infrared spectroscopy. Results showed that both Pin-a and β-Pth interact strongly with condensed phase DPPG monolayers, but the degree of penetration was different. β-Pth was shown to penetrate the lipid acyl chain region of the monolayer and remove lipids from the air/liquid interface during the adsorption process, suggesting this protein may be able to both form membrane spanning ion channels and remove membrane phospholipids in its lytic activity. Conversely, Pin-a was shown to interact mainly with the head-group region of the condensed phase DPPG monolayer and form a 33 Å thick layer below the lipid film. The differences between the interfacial structures formed by these two proteins may be related to the differing composition of the Pin-a and β-Pth hydrophobic regions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phytophagous insects have to contend with a wide variation in food quality brought about by a variety of factors intrinsic and extrinsic to the plant. One of the most important factors is infection by plant pathogenic fungi. Necrotrophic and biotrophic plant pathogenic fungi may have contrasting effects on insect herbivores due to their different infection mechanisms and induction of different resistance pathways, although this has been little studied and there has been no study of their combined effect. We studied the effect of the biotrophic rust fungus Uromyces viciae-fabae (Pers.) Schroet (Basidiomycota: Uredinales: Pucciniaceae) and the necrotrophic fungus Botrytis cinerea Pers. (Ascomycota: Helotiales: Sclerotiniaceae) singly and together on the performance of the aphid Aphis fabae Scop. (Hemiptera: Aphididae) on Vicia faba (L.) (Fabaceae). Alone, botrytis had an inhibitory effect on individual A. fabae development, survival and fecundity, while rust infection consistently enhanced individual aphids’ performance. These effects varied in linear relation to lesion or pustule density. However, whole-plant infection by either pathogen resulted in a smaller aphid population of smaller aphids than on uninfected plants, indicating a lowering of aphid carrying capacity with infection. When both fungi were applied simultaneously to a leaf they generally cancelled the effect of each other out, resulting in most performance parameters being similar to the controls, although fecundity was reduced. However, sequential plant infection (pathogens applied five days apart) led to a 70% decrease in fecundity and 50% reduction in intrinsic rate of increase. The application of rust before botrytis had a greater inhibitory effect on aphids than applying botrytis before rust. Rust infection increased leaf total nitrogen concentration by 30% while infection by botrytis with or without rust led to a 38% decrease. The aphids’ responses to the two plant pathogens individually is consistent with the alteration in plant nutrient content by infection and also the induction of different plant defence pathways and the possible cross-talk between them. This is the first demonstration of the complex effects of the dual infection of a plant by contrasting pathogens on insect herbivores. Key words: Vicia faba, Botrytis cinerea, Uromyces viciae-fabae, tripartite interactions, induced resistance

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim Most vascular plants on Earth form mycorrhizae, a symbiotic relationship between plants and fungi. Despite the broad recognition of the importance of mycorrhizae for global carbon and nutrient cycling, we do not know how soil and climate variables relate to the intensity of colonization of plant roots by mycorrhizal fungi. Here we quantify the global patterns of these relationships. Location Global. Methods Data on plant root colonization intensities by the two dominant types of mycorrhizal fungi world-wide, arbuscular (4887 plant species in 233 sites) and ectomycorrhizal fungi (125 plant species in 92 sites), were compiled from published studies. Data for climatic and soil factors were extracted from global datasets. For a given mycorrhizal type, we calculated at each site the mean root colonization intensity by mycorrhizal fungi across all potentially mycorrhizal plant species found at the site, and subjected these data to generalized additive model regression analysis with environmental factors as predictor variables. Results We show for the first time that at the global scale the intensity of plant root colonization by arbuscular mycorrhizal fungi strongly relates to warm-season temperature, frost periods and soil carbon-to-nitrogen ratio, and is highest at sites featuring continental climates with mild summers and a high availability of soil nitrogen. In contrast, the intensity of ectomycorrhizal infection in plant roots is related to soil acidity, soil carbon-to-nitrogen ratio and seasonality of precipitation, and is highest at sites with acidic soils and relatively constant precipitation levels. Main conclusions We provide the first quantitative global maps of intensity of mycorrhizal colonization based on environmental drivers, and suggest that environmental changes will affect distinct types of mycorrhizae differently. Future analyses of the potential effects of environmental change on global carbon and nutrient cycling via mycorrhizal pathways will need to take into account the relationships discovered in this study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Predominant frameworks for understanding plant ecology have an aboveground bias that neglects soil micro-organisms. This is inconsistent with recent work illustrating the importance of soil microbes in terrestrial ecology. Microbial effects have been incorporated into plant community dynamics using ideas of niche modification and plant–soil community feedbacks. Here, we expand and integrate qualitative conceptual models of plant niche and feedback to explore implications of microbial interactions for understanding plant community ecology. At the same time we review the empirical evidence for these processes. We also consider common mycorrhizal networks, and propose that these are best interpreted within the feedback framework. Finally, we apply our integrated model of niche and feedback to understanding plant coexistence, monodominance and invasion ecology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the present study was to analyze the mycobiota, occurrence of mycotoxins (aflatoxins and cyclopiazonic acid), and production of phytoalexin (trans-resveratrol) in two peanut varieties (Runner IAC 886 and Caiapo) during plant growth in the field. Climatic factors (rainfall, relative humidity and temperature) and water activity were also evaluated. The results showed a predominance of Fusarium spp. in kernels and pods, followed by Penicillium spp. and Aspergillus flavus. Aflatoxins were detected in 20% and 10% of samples of the IAC 886 and Caiapo varieties, respectively. Analysis showed that 65% of kernel samples of the IAC 886 variety and 25% of the Caiapo variety were contaminated with cyclopiazonic acid. trans-Resveratrol was detected in 6.7% of kernel samples of the IAC 886 variety and in 20% of the Caiapo variety. However, trans-resveratrol was found in 73.3% of leaf samples in the two varieties studied. (C) 2011 Published by Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Xylella fastidiosa causes citrus variegated chlorosis (CVC). Information generated from the X. fastidiosa genome project is being used to study the underlying mechanisms responsible for pathogenicity. However, the lack of an experimental host other than citrus to study plant-X. fastidiosa interaction has been an obstacle to accelerated progress in this area. We present here results of three experiments that demonstrated that tobacco could be an important experimental host for X. fastidiosa. All tobacco plants inoculated with a citrus strain of X. fastidiosa expressed unequivocal symptoms, consisting of orange leaf lesions, approximately 2 months after injection of the pathogen. CVC symptoms were observed in citrus 3 to 6 months after inoculation. The pathogen was readily detected in symptomatic tobacco plants by polymerase chain reaction (PCR) and phase contrast microscopy. In addition, X. fastidiosa was reisolated on agar plates in 4 of 10 plants. Scanning electron microscopy analysis of cross sections of stems and petioles revealed the presence of rod shaped bacteria restricted to the xylem of inoculated plants. The cell size was within the limit typical of X. fastidiosa.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interactions between the entomopathogenic fungus Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Ascomycota: Hypocreales) and the aphid parasitoid Diaeretiella rapae McIntoch (Hymenoptera: Braconidae) were evaluated under laboratory conditions. Nymphs of Myzus persicae Sulzer (Hemiptera: Aphididae) were first exposed to parasitoid females for 24 h and then 0, 24, and 48 h afterwards sprayed with a solution of B. bassiana. Likewise, aphids were also sprayed with B. bassiana and then exposed to parasitoids at 0, 24, and 48 h afterwards. Parasitism rate varied from 13 to 66.5%, and were signi_cantly lower in treatments where the two agents were exposed within a 0-24 h time interval compared with the control (without B. bassiana). Parasitoid emergence was negatively affected in treatments with B. bassiana spraying and subsequent exposure to D. rapae. Decreases in longevity of adult females of the D. rapae F1 generation were observed in treatments with B. bassiana spraying. The application of these two biological control agents can be used in combination on the control of M. persicae, wherein this use requires effective time management to avoid antagonistic interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes a range of economically important plant diseases. Here we report the complete genome sequence of X. fastidiosa clone 9a5c, which causes citrus variegated chlorosis - a serious disease of orange trees. The genome comprises a 52.7% GC-rich 2,679,305-base-pair (bp) circular chromosome and 'two plasmids of 51,158 bp and 1,285 bp. We can assign putative functions to47% of the 2,904 predicted coding regions. Efficient metabolic functions are predicted, with sugars as the principal energy and carbon source, supporting existence in the nutrient-poor xylem sap. The mechanisms associated with pathogenicity and virulence involve toxins, antibiotics and ion sequestration systems, as well as bacterium-bacterium and bacterium-host interactions mediated by a range of proteins. Orthologues of some of these proteins have only been identified in animal and human pathogens; their presence in X. fastidiosa indicates that the molecular basis for bacterial pathogenicity is both conserved and independent of host. At least 83 genes are bacteriophage-derived and include virulence-associated genes from other bacteria, providing direct evidence of phage-mediated horizontal gene transfer.