1000 resultados para Plant domestication
Resumo:
Weed biocontrol relies on host specificity testing, usually carried out under quarantine conditions to predict the future host range of candidate control agents. The predictive power of host testing can be scrutinised directly with Aconophora compressa, previously released against the weed Lantana camara L. (lantana) because its ecology in its new range (Australia) is known and includes the unanticipated use of several host species. Glasshouse based predictions of field host use from experiments designed a posteriori can therefore be compared against known field host use. Adult survival, reproductive output and egg maturation were quantified. Adult survival did not differ statistically across the four verbenaceous hosts used in Australia. Oviposition was significantly highest on fiddlewood (Citharexylum spinosum L.), followed by lantana, on which oviposition was significantly higher than on two varieties of Duranta erecta (‘‘geisha girl’’ and ‘‘Sheena’s gold’’; all Verbenaceae). Oviposition rates across Duranta varieties were not significantly different from each other but were significantly higher than on the two non-verbenaceous hosts (Jacaranda mimosifolia D. Don: Bignoneaceae (jacaranda) and Myoporum acuminatum R. Br.: Myoporaceae (Myoporum)). Production of adult A. compressa was modelled across the hosts tested. The only major discrepancy between model output and their relative abundance across hosts in the field was that densities on lantana in the field were much lower than predicted by the model. The adults may, therefore, not locate lantana under field conditions and/or adults may find lantana but leave after laying relatively few eggs. Fiddlewood is the only primary host plant of A. compressa in Australia, whereas lantana and the others are used secondarily or incidentally. The distinction between primary, secondary and incidental hosts of a herbivore species helps to predict the intensity and regularity of host use by that herbivore. Populations of the primary host plants of a released biological control agent are most likely to be consistently impacted by the herbivore, whereas secondary and incidental host plant species are unlikely to be impacted consistently. As a consequence, potential biocontrol agents should be released only against hosts to which they have been shown to be primarily adapted.
Resumo:
Seed persistence of Gymnocoronis spilanthoides (D.Don) DC.; Asteraceae (Senegal tea), a serious weed of freshwater habitats, was examined in relation to burial status and different soil moisture regimes over a 3-year period. Seeds were found to be highly persistent, especially when buried. At the end of the experiment, 42.0%, 27.3% and 61.4% of buried seeds were viable following maintenance at field capacity, water logged and fluctuating (cycles of 1 week at field capacity followed by 3 weeks’ drying down) soil moisture conditions, respectively. Comparable viability values for surface-situated seeds were ~3% over all soil moisture regimes. Predicted times to1% viability are 16.2 years for buried seed and 3.8 years for surface-situated seed. Persistence was attributed primarily to the absence of light, a near-obligate requirement for germination in this species, although secondary dormancy was induced in some seeds. Previous work has demonstrated low fecundity in field populations of G. spilanthoides, which suggests that soil seed banks may not be particularly large. However, high levels of seed persistence, combined with ostensibly effective dispersal mechanisms, indicate that this weed may prove a difficult target for regional or state-wide eradication.
Resumo:
For systems which can be decomposed into slow and fast subsystems, a near optimum linear state regulator consisting of two subsystem regulators can be developed. Depending upon the desired criteria, either a short term (fast controller) or a long term controller (slow controller) can be easily designed with minimum computational costs. Using this approach an example of a power system supplying a cyclic load is studied and the performance of the different controllers are compared.
Resumo:
Phenotypic variation in heartwood and essential-oil characters of Santalum austrocaledonicum was assessed across eleven populations on seven islands of Vanuatu Trees differed significantly in their percentage heartwood cross-sectional area and this varied independently of stem diameter The concentrations of the four major essential-oil constituents (alpha-santalol, beta-santalol. (Z)-beta-curcumen-12-ol, and cis-nuciferol) of alcohol-extracted heartwood exhibited at least tenfold and continuous tree-to-tree variation Commercially important components alpha- and beta-santalol found in individual trees ranged from 0 8-47% and 0-24 1%, respectively, across all populations, and significant (P < 0 05) differences for each were found between Individual populations. The Erromango population was unique in that the mean concentrations of its monocyclic ((Z)-beta-curcumen-12-ol and cis-nuciferol) sesquiterpenes exceeded those of Its bi- and tricyclic (alpha- and beta-santalol) sesquiterpenes Heartwood colour varied between trees and spanned 65 colour categories, but no identifiable relationships were found between heartwood colour and alpha- and beta-santalol, although a weak relationship was evident between colour saturation and total oil concentration These results indicate that the heartwood colour is not a reliable predictive trait for oil quality The results of this study highlight the knowledge gaps in fundamental understanding of heartwood biology in Santalum genus The intraspecific variation in heartwood cross-sectional area. oil concentration. and oil quality traits is of considerable importance to the domestication of sandalwood and present opportunities for the development of highly superior S austrocaledonicum cultivars that conform to the industry's International Standards used for S album.
Resumo:
Large geographic areas can have numerous incipient invasive plant populations that necessitate eradication. However, resources are often deficient to address every infestation. Within the United States, weed lists (either state-level or smaller unit) generally guide the prioritization of eradication of each listed species uniformly across the focus region. This strategy has several limitations that can compromise overall effectiveness, which include spending limited resources on 1) low impact populations, 2) difficult to access populations, or 3) missing high impact populations of low priority species. Therefore, we developed a novel science-based, transparent, analytical ranking tool to prioritize weed populations, instead of species, for eradication and tested it on a group of noxious weeds in California. For outreach purposes, we named the tool WHIPPET (Weed Heuristics: Invasive Population Prioritization for Eradication Tool). Using the Analytic Hierarchy Process that included expert opinion, we developed three major criteria, four sub-criteria, and four sub-sub-criteria, taking into account both species and population characteristics. Subject matter experts weighted and scored these criteria to assess the relative impact, potential spread, and feasibility of eradication (major criteria) for 100 total populations of 19 species. Species-wide population scores indicated that conspecific populations do not necessarily group together in the final ranked output. Thus, priority lists based solely on species-level characteristics are less effective compared to a blended prioritization based on both species attributes and individual population and site parameters. WHIPPET should facilitate a more efficacious decision-making process allocating limited resources to target invasive plant infestations with the greatest predicted impacts to the region under consideration.
Resumo:
Understanding plant demography and plant response to herbivory is critical to the selection of effective weed biological control agents. We adopt the metaphor of 'filters' to suggest how agent prioritisation may be improved to narrow our choices down to those likely to be most effective in achieving the desired weed management outcome. Models can serve to capture our level of knowledge (or ignorance) about our study system and we illustrate how one type of modelling approach (matrix models) may be useful in identifying the weak link in a plant life cycle by using a hypothetical and an actual weed example (Parkinsonia aculeata). Once the vulnerable stage has been identified we propose that studying plant response to herbivory (simulated and/or actual) can help identify the guilds of herbivores to which a plant is most likely to succumb. Taking only potentially effective agents through the filter of host specificity may improve the chances of releasing safe and effective agents. The methods we outline may not always lead us definitively to the successful agent(s), but such an empirical, data-driven approach will make the basis for agent selection explicit and serve as testable hypotheses once agents are released.
Resumo:
Technical highlights 2009–10, with detailed progress reports on the latest invasive plant and animal research undertaken by Biosecurity Queensland, a service unit of the Department of Employment, Economic Development and Innovation.
Resumo:
Technical highlights 2008–09, with detailed progress reports on the latest invasive plant and animal research undertaken by Biosecurity Queensland, a service unit of the Department of Employment, Economic Development and Innovation.
Resumo:
Technical highlights 2007–08, with detailed progress reports on the latest invasive plant and animal research undertaken by Biosecurity Queensland, a service unit of the Department of Primary Industries and Fisheries.
Resumo:
An overview of teaching and research activities in the area of plant anatomy at QUT is provided. The current status of teaching of technical skills in plant anatomy is discussed briefly. Examples of applications of plant anatomy to a diverse range of fields are provided, including the crossover between art and science.
Resumo:
Aconophora compressa Walker (Hemiptera: Membracidae) was released in 1995 against the weed lantana in Australia, and is now found on multiple host plant species. The intensity and regularity at which A. compressa uses different host species was quantified in its introduced Australian range and also its native Mexican range. In Australia, host plants fell into three statistically defined categories, as indicated by the relative rates and intensities at which they were used in the field. Fiddlewood (Citharexylum spinosum L.: Verbenaceae) was used much more regularly and at higher densities than any other host sampled, and alone made up the first group. The second group, lantana (Lantana camara L.: Verbenaceae; pink variety) and geisha girl (Duranta erecta L.: Verbenaceae), were used less regularly and at much lower densities than fiddlewood. The third group, Sheena’s gold (another variety of D. erecta), jacaranda (Jacaranda mimosifolia D. Don: Bignoniaceae) and myoporum (Myoporum acuminatum R. Br.: Myoporaceae), were used infrequently and at even lower densities. In Mexico, the insect was found at relatively low densities on all hosts relative to those in Australia. Densities were highest on L. urticifolia, D. erecta and Tecoma stans (L.) Juss. ex Kunth (Bignoniaceae), which were used at similar rates to one another. It was found also on a few other verbenaceous and non-verbenaceous host species but at even lower densities. The relative rate at which Citharexylum spp. and L. urticifolia were used could not be assessed in Mexico because A. compressa was found on only one plant of each species in areas where these host species co-occurred. The low rate at which A. compressa occurred on fiddlewood in Mexico is likely to be an artefact of the short-term nature of the surveys or differences in the suites of Citharexylum and Lantana species available there. These results provide further incentive to insist on structured and quantified surveys of non-target host use in the native range of potential biological control agents prior to host testing studies in quarantine.
Resumo:
Microsomal b-type hemoprotein designated, cytochrome b555 of C-Roseus seedlings was solubilized using detergents and purified by a combination of ion exchange chromatography and gel filtration to a specific content of 18.5 nmol per mg of protein. The purified cytochrome b555 was homogeneous and estimated to have an apparent molecular weight of 16500 on SDS-PAGE. The absorption spectrum of the reduced form has major peaks at 424, 525 and 555 nm. The α-band of the reduced form is asymmetric with a pronounced shoulder at 559 nm. The spectrum of the pyridine ferrohemochrome shows absorption peaks at 557, 524 and 418 nm indicating that the cytochrome has protoheme prosthetic group. The purified cytochrome is autoxidizable and does not combine with carbon monoxide, azide or cyanide. It is reducible by NADH in the presence of NADH-cytochrome b555 reductase partially purified from C-Roseus microsomes.
Resumo:
Vegetable plant and Soil health.
Resumo:
Domestication of Meliaceae, particularly Chukrasia and Toona ciliata with reference to Hypsipyla shoot borers. Clonal and silvicultural aspects.