617 resultados para Phreatic Aquifer
Resumo:
The Keystone XL has a big role for transforming Canadian oil to the USA. The function of the pipeline is decreasing the dependency of the American oil industry on other countries and it will help to limit external debt. The proposed pipeline seeks the most suitable route which cannot damage agricultural and natural water recourses such as the Ogallala Aquifer. Using the Geographic Information System (GIS) techniques, the suggested path in this study got extremely high correct results that will help in the future to use the least cost analysis for similar studies. The route analysis contains different weighted overlay surfaces, each, was influenced by various criteria (slope, geology, population and land use). The resulted least cost path routes for each weighted overlay surface were compared with the original proposed pipeline and each displayed surface was more effective than the proposed Keystone XL pipeline.
Resumo:
Dissertação de mestrado em Ordenamento e Valorização de Recursos Geológicos
Resumo:
The vulnerability to pollution and hydrochemical variation of groundwater in the mid-west karstic lowlands of Ireland were investigated from October 1992 to September 1993, as part of an EU STRIDE project at Sligo Regional Technical College. Eleven springs were studied in the three local authority areas of Co. Galway, Co. Mayo, and Co. Roscommon. Nine of the springs drain locally or regionally important karstic aquifers and two drain locally important sand and gravel aquifers. The maximum average daily discharge of any of the springs was 16,000 m3/day. Determination of the vulnerability of groundwater to pollution relies heavily on an examination of subsoil deposits in an area since they can act as a protecting or filtering layer over groundwater. Within aquifers/spring catchments, chemical reactions such as adsorption, solution-precipitation or acid-base reactions occur and modify the hydrochemistry of groundwater (Lloyd and Heathcote, 1985). The hydrochemical processes) that predominate depend cm the mineralogy of the aquifer, the hydrogeological environment, the overlying subsoils, and the history of groundwater movement. The aim of this MSc research thesis was to investigate the hydrochemical variation of spring outflow and to assess the relationship between these variations and the intrinsic vulnerability of the springs and their catchments. If such a relationship can be quantified, then it is hoped that the hydrochemical variation of a spring may indicate the vulnerability of a spring catchment without the need for determining it by field mapping. Such a method would be invaluable to any of the three local authorities since they would be able to prioritise sources that are most at risk from pollution, using simple techniques of chemical sampling, and statistical analysis. For each spring a detailed geological, hydrogeological and hydrochemical study was carried out. Individual catchment areas were determined with a water balance/budget and groundwater tracing. The subsoils geology for each spring catchment were mapped at the 1:10,560 scale and digitised to the 1:25,000 scale with AutoCad™ and Arclnfo™. The vulnerability of each spring was determined using the Geological Survey's vulnerability guidelines. Field measurements and laboratory based chemistry analyses of the springs were undertaken by personnel from both the EPA Regional Laboratory in Castlebar, Co. Mayo, and the Environment Section of Roscommon Co. Council. Electrical conductivity and temperature (°C) were sampled fortnightly, in the field, using a WTW microprocessor conductivity meter. A percentage (%) vulnerability was applied to each spring in order to indicate the areal extent of the four main classes of vulnerability (Extreme, High, Moderate, and Low) which occurred within the confines of each spring catchment. Hydrochemical variation for the springs were presented as the coefficient of variation of electrical conductivity. The results of this study show that a clear relationship exists between the degree of vulnerability of each catchment area as defined by the subsoil cover and the coefficient of variation of EC, with the coefficient of variation increasing as the vulnerability increases. The coefficient of variation of electrical conductivity is considered to be a parameter that gives a good general reflection of the degree of vulnerability occurring in a spring catchment in Ireland's karstic lowlands.
Resumo:
The aim of the project was to determine the extent and quality of the groundwater in Tipperary South Riding with a view to developing a groundwater protection plan which would allow the Local Authority to manage, protect and develop the groundwater as efficiently as possible. The geology of the area varies with topography. The low-lying areas of the county comprise mainly Carboniferous limestones while the elevated regions consist of sandstones and shales of Upper Carboniferous, Devonian and Silurian ages. Deformation of these rocks decreases in magnitude moving northwards over the area; the Southern Synclines having suffered the effects of the Hercynian orogeny and the northern region exhibiting Caledonian orogenic trends. Quaternary (subsoil) deposits are found throughout the area and are of variable thickness and permeability. Till is the most widespread deposit with discontinuous pockets of sand and gravel in various proportions, and some marl, alluvium and peat in places. The principal aquifers of the area are the Kiltorcan sandstone formation and various limestone units within the Carboniferous succession. 50 % of south Tipperary constitutes either regionally or locally important aquifers. Secondary permeabilities created by structural deformation, dolomitisation, karstification and weathering processes create high transmissivities and often have large well yields. Specific baseflow analysis highlighted the complexity of the aquifers and proved that the lower part of the Suir river system is a major groundwater resource region. The hydrochemistry and water quality of the local authority groundwater sources was examined briefly. The majority of south Tipperary is underlain by limestone or Quaternary deposits derived from limestone and, consequently, calcium/magnesium bicarbonate waters predominate. The quality of the groundwater in south Tipperary demonstrates that the main concern originates from the presence of E.coli, and Total coliforms. The primary sources of contamination are from farmyard wastes and septic tanks. The vulnerability of groundwater to diffuse and point sources of pollution has been found to be dependent on the overlying soil, subsoil and the thickness of the unsaturated zone. A conceptual rather than quantitative approach is used and it is found that approximately 60% of south Tipperary is designated as being extremely or highly vulnerable. The groundwater protection plan was devised subsequent to an understanding of the aquifer systems, an assessment of the vulnerability, and a review of the Irish planning system and environmental law. It is recommended that the plan be integrated into the county development plan for legislative purposes. A series of acceptability matrices were devised to restrict potentially polluting activities in vulnerable areas while maintaining a balance between protection of the groundwater resource and the need to site essential developments.
Resumo:
The decisions of many individuals and social groups, taking according to well-defined objectives, are causing serious social and environmental problems, in spite of following the dictates of economic rationality. There are many examples of serious problems for which there are not yet appropriate solutions, such as management of scarce natural resources including aquifer water or the distribution of space among incompatible uses. In order to solve these problems, the paper first characterizes the resources and goods involved from an economic perspective. Then, for each case, the paper notes that there is a serious divergence between individual and collective interests and, where possible, it designs the procedure for solving the conflict of interests. With this procedure, the real opportunities for the application of economic theory are shown, and especially the theory on collective goods and externalities. The limitations of conventional economic analysis are shown and the opportunity to correct the shortfalls is examined. Many environmental problems, such as climate change, have an impact on different generations that do not participate in present decisions. The paper shows that for these cases, the solutions suggested by economic theory are not valid. Furthermore, conventional methods of economic valuation (which usually help decision-makers) are unable to account for the existence of different generations and tend to obviate long-term impacts. The paper analyzes how economic valuation methods could account for the costs and benefits enjoyed by present and future generations. The paper studies an appropriate consideration of preferences for future consumption and the incorporation of sustainability as a requirement in social decisions, which implies not only more efficiency but also a fairer distribution between generations than the one implied by conventional economic analysis.
Resumo:
Knowledge of the spatial distribution of hydraulic conductivity (K) within an aquifer is critical for reliable predictions of solute transport and the development of effective groundwater management and/or remediation strategies. While core analyses and hydraulic logging can provide highly detailed information, such information is inherently localized around boreholes that tend to be sparsely distributed throughout the aquifer volume. Conversely, larger-scale hydraulic experiments like pumping and tracer tests provide relatively low-resolution estimates of K in the investigated subsurface region. As a result, traditional hydrogeological measurement techniques contain a gap in terms of spatial resolution and coverage, and they are often alone inadequate for characterizing heterogeneous aquifers. Geophysical methods have the potential to bridge this gap. The recent increased interest in the application of geophysical methods to hydrogeological problems is clearly evidenced by the formation and rapid growth of the domain of hydrogeophysics over the past decade (e.g., Rubin and Hubbard, 2005).
Resumo:
The hydrogen and oxygen isotopes of water and the carbon isotope composition of dissolved inorganic carbon (DIC) from different aquifers at an industrial site, highly contaminated by organic pollutants representing residues of the former gas production, have been used as natural tracers to characterize the hydrologic system. On the basis of their stable isotope compositions as well as the seasonal variations, different groups of waters (precipitation, surface waters, groundwaters and mineral waters) as well as seasonably variable processes of mixing between these waters can clearly be distinguished. In addition, reservoir effects and infiltration rates can be estimated. In the northern part of the site an influence of uprising mineral waters within the Quaternary aquifers, presumably along a fault zone, can be recognized. Marginal infiltration from the Neckar River in the cast and surface water infiltration adjacent to a steep hill on the western edge of the site with an infiltration rate of about one month can also be resolved through the seasonal variation. Quaternary aquifers closer to the centre of the site show no seasonal variations, except for one borehole close to a former mill channel and another borehole adjacent to a rain water channel. Distinct carbon isotope compositions and concentrations of DIC for these different groups of waters reflect variable influence of different components of the natural carbon cycle: dissolution of marine carbonates in the mineral waters, biogenic, soil-derived CO2 in ground- and surface waters, as well as additional influence of atmospheric CO2 for the surface waters. Many Quaternary aquifer waters have, however, distinctly lower delta(13)C(DIC) values and higher DIC concentrations compared to those expected for natural waters. Given the location of contaminated groundwaters at this site but also in the industrially well-developed valley outside of this site, the most likely source for the low C-13(DIC) values is a biodegradation of anthropogenic organic substances, in particular the tar oils at the site.
Resumo:
Modern sonic logging tools designed for shallow environmental and engineering applications allow for P-wave phase velocity measurements over a wide frequency band. Methodological considerations indicate that, for saturated unconsolidated sediments in the silt to sand range and source frequencies ranging from approximately 1 to 30 kHz, the observable poro-elastic P-wave velocity dispersion is sufficiently pronounced to allow for reliable first-order estimations of the underlying permeability structure. These predictions have been tested on and verified for a surficial alluvial aquifer. Our results indicate that, even without any further calibration, the thus obtained permeability estimates as well as their variabilities within the pertinent lithological units are remarkably close to those expected based on the corresponding granulometric characteristics.
Resumo:
Biological and physical processes occurring in soils may lead to significant isotopic changes between the isotopic compositions of atmospheric CO2 and of soil CO2. Also, during water and gas transport from the soil surface to the water table, isotopic changes likely occur due to numerous physical processes such as gas production and diffusion, water advection, and gas-water-rock interactions. In most cases, these changes are not included in the correction models developed for groundwater dating, whereas they can significantly impact the calculation of the 14C age. We explore the role of these processes using: i) experimental data from two aquifer sites (Fontainebleau sands and Astian sands, France), ii) a distributed model to simulate the 14C activities of soil CO2, and iii) numerical simulations in order to highlight the role of the physical processes.¦The 13C content in soil CO2 showed seasonal variations and highlighted the competition between CO2 production and CO2 diffusion. Their respective contributions played a significant role in defining the isotopic composition of CO2 at the water table. On both study sites, variations of the 14C activity in soil CO2 reflect the competition between the fluxes of root derived-CO2 and organic matter derived-CO2. Since the nuclear weapon tests in the fifties and sixties, soil CO2 became significantly depleted in 14C compared to modern atmospheric CO2. Models that take into account this 14C depletion in soil CO2 for dating modern groundwater would lead to apparent younger 14C ages than models that only consider the 14C activity in atmospheric CO2. Moreover, since 2000-2005, the inverse effect is observed as soil CO2 is enriched in 14C compared to atmospheric CO2.¦Therefore, we conclude that the isotopic composition of CO2 at the water table have to be taken into account for the dating of modern groundwater. This requires a systematic sampling of soil CO2 and the measurement of its 13C and 14C contents. We used this information in a numerical simulation to calculate the evolution of isotopic composition of CO2 from the soil surface to the water table. This simulation integrated physical processes in the unsaturated zone (e.g. CO2 production and diffusion, water advection, etc.) and gas-water-rock interactions.
Resumo:
L’elevat consum energètic de les societats actuals, així com la impossibilitat de sostenir-lo a llarg termini implica la cerca de noves fonts d’energia. D’aquesta manera, en el camp de la climatització residencial, l’energia geotèrmica de molt baixa entalpia es posiciona com una alternativa als recursos energètics actuals. Així, els primers metres de subsòl presenten una temperatura adequada per al seu aprofitament calorífic, mitjançant els sistemes geotèrmics de bomba de calor. Si bé a nivell energètic, són sistemes, intrínsecament, molt eficients, el seu rendiment pot patir importants variacions davant dels canvis en les condicions del medi geològic i hidrogeològic. Especialment, els col·lectors de calor verticals, treballen, amb freqüència, en el si de les formacions hidrogeològiques. En aquest sentit, els canvis del nivell hidràulic i de la temperatura de l’aigua de l’aqüífer es manifesten amb variacions de la conductivitat tèrmica equivalent i del flux subterrani d’aigua, que alhora, aquestes, es tradueixen en alteracions del flux subterrani de calor. Davant d’aquest fet, l’avaluació quantitativa de l’efecte d’aquestes fluctuacions que es presenta en aquest treball mostra petites variacions del nivell hidràulic i de la temperatura de l’aigua comporten canvis molt notables en l’eficiència dels sistemes verticals de bomba de calor geotèrmica.
Resumo:
This paper illustrates the practicality and efficiency of gravimetry for aquifer prospecting in arid zones. Known for the long and tedious data-processing it requires, this method becomes expeditious when simplified as presented here. Its use is then fully justified in a survey of this kind. During the study of the Teloua alluvial aquifer (Agadez, Niger), several ancient channels were clearly and rapidly located. Comparison of the results obtained here with those from previous studies demonstrates anew that for comprehensive prospecting, several complementary geophysical methods should always be employed.
Resumo:
Modern sonic logging tools designed for shallow environmental and engineering applications allow for P-wave phase velocity measurements over a wide frequency band. Methodological considerations indicate that, for saturated unconsolidated sediments in the silt to sand range and source frequencies ranging from approximately 1 to 30 kHz, the observable poro-elastic P-wave velocity dispersion is sufficiently pronounced to allow for reliable first-order estimations of the underlying permeability structure. These predictions have been tested on and verified for a surficial alluvial aquifer. Our results indicate that, even without any further calibration, the thus obtained permeability estimates as well as their variabilities within the pertinent lithological units are remarkably close to those expected based on the corresponding granulometric characteristics.
Resumo:
Abstract Accurate characterization of the spatial distribution of hydrological properties in heterogeneous aquifers at a range of scales is a key prerequisite for reliable modeling of subsurface contaminant transport, and is essential for designing effective and cost-efficient groundwater management and remediation strategies. To this end, high-resolution geophysical methods have shown significant potential to bridge a critical gap in subsurface resolution and coverage between traditional hydrological measurement techniques such as borehole log/core analyses and tracer or pumping tests. An important and still largely unresolved issue, however, is how to best quantitatively integrate geophysical data into a characterization study in order to estimate the spatial distribution of one or more pertinent hydrological parameters, thus improving hydrological predictions. Recognizing the importance of this issue, the aim of the research presented in this thesis was to first develop a strategy for the assimilation of several types of hydrogeophysical data having varying degrees of resolution, subsurface coverage, and sensitivity to the hydrologic parameter of interest. In this regard a novel simulated annealing (SA)-based conditional simulation approach was developed and then tested in its ability to generate realizations of porosity given crosshole ground-penetrating radar (GPR) and neutron porosity log data. This was done successfully for both synthetic and field data sets. A subsequent issue that needed to be addressed involved assessing the potential benefits and implications of the resulting porosity realizations in terms of groundwater flow and contaminant transport. This was investigated synthetically assuming first that the relationship between porosity and hydraulic conductivity was well-defined. Then, the relationship was itself investigated in the context of a calibration procedure using hypothetical tracer test data. Essentially, the relationship best predicting the observed tracer test measurements was determined given the geophysically derived porosity structure. Both of these investigations showed that the SA-based approach, in general, allows much more reliable hydrological predictions than other more elementary techniques considered. Further, the developed calibration procedure was seen to be very effective, even at the scale of tomographic resolution, for predictions of transport. This also held true at locations within the aquifer where only geophysical data were available. This is significant because the acquisition of hydrological tracer test measurements is clearly more complicated and expensive than the acquisition of geophysical measurements. Although the above methodologies were tested using porosity logs and GPR data, the findings are expected to remain valid for a large number of pertinent combinations of geophysical and borehole log data of comparable resolution and sensitivity to the hydrological target parameter. Moreover, the obtained results allow us to have confidence for future developments in integration methodologies for geophysical and hydrological data to improve the 3-D estimation of hydrological properties.
Resumo:
Vertical electric soundings, 2D resistivity imaging and several logging measurements were performed at Kappelen test site to identify the various geolelectric facies that allowed determining the tabular and horizontal structure of the aquifer. The surface-based geoelectric methods allowed for a reliable characterization of the overall structure and the geometry of the aquifer, while geophysical logging methods allowed for inferring detailed hydrogeophysical characteristics, such as the electrical resistivity, total porosity, global and matrix density and hydraulic conductivity. The synoptic interpretation and integration of this broad and diverse database allows for constraining the key hydrological characteristics and hence forms the basis for the detailed hydraulic modelling of flow and transport process.
Resumo:
The area known as 'prats de Sant Sebastià' is in Caldes de Malavella. It is part of the wetlands located in the south-eastern end of the Selva Basin. Several areas with unusually high conductivity (EC up to 24,500 uS/cm) have been identified in this place. This fact allows highly specialised and comparatively rare botanical species to grow in this area. These saline soils follow a north-south line-up. The geophysical data, obtained with a field conductivemeter (EM 31), show that this superficial line-up continues in the subsoil. In addition to this, the conductivity cartography, made for an electromagnetic exploration depth of 6 meters, shows that the width of the region where these salinity anomalies take place increases in depth. When included in the hidrogeological context of this sector of the Selva Basin, these data bring new elements for the study of the genesis and working of these marshy environments.The model that future research will have to confirm, maintains that the groundwater discharges coming from the underlying hydrogeothermal aquifer are a conditioning factor of the aforementioned phenomenon. This ascending flow of highly mineralised waters (TDS of about 3,500 mg/l) can produce and keep stable the soil salinity