855 resultados para Phosphodiesterase Inhibitors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative molecular field analysis (CoMFA) of alkanoic acid 3-oxo-cyclohex-1-enyl ester and 2-acylcyclohexane-1,3-dione derivatives of 4-hydroxyphenylpyruvate dioxygenase inhibitors has been performed to determine the factors required for the activity of these compounds. The substrate's conformation abstracted from dynamic modeling of the enzyme-substrate complex was used to build the initial structures of the inhibitors. Satisfactory results were obtained after an all-space searching procedure, performing a leave-one out (LOO) cross-validation study with cross-validation q(2) and conventional r(2) values of 0.779 and 0.989, respectively. The results provide the tools for predicting the affinity of related compounds, and for guiding the design and synthesis of new HPPD ligands with predetermined affinities.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coronavirus main protease, Mpro, is considered to be a major target for drugs suitable for combating coronavirus infections including severe acute respiratory syndrome (SARS). An HPLC-based screening of electrophilic compounds that was performed to identify potential Mpro inhibitors revealed etacrynic acid tert-butylamide (6a) as an effective nonpeptidic inhibitor. Docking studies suggested a binding mode in which the phenyl ring acts as a spacer bridging the inhibitor's activated double bond and its hydrophobic tert-butyl moiety. The latter is supposed to fit into the S4 pocket of the target protease. Furthermore, these studies revealed etacrynic acid amide (6b) as a promising lead for nonpeptidic active-site-directed Mpro inhibitors. In a fluorimetric enzyme assay using a novel fluorescence resonance energy transfer (FRET) pair labeled substrate, compound 6b showed a Ki value of 35.3 M. Since the novel lead compound does not target the S1', S1, and S2 subsites of the enzyme's substrate-binding pockets, there is room for improvement that underlines the lead character of compound 6b.