992 resultados para Pharmacy and pharmacology
Resumo:
The DNA G-qadruplexes are one of the targets being actively explored for anti-cancer therapy by inhibiting them through small molecules. This computational study was conducted to predict the binding strengths and orientations of a set of novel dimethyl-amino-ethyl-acridine (DACA) analogues that are designed and synthesized in our laboratory, but did not diffract in Synchrotron light.Thecrystal structure of DNA G-Quadruplex(TGGGGT)4(PDB: 1O0K) was used as target for their binding properties in our studies.We used both the force field (FF) and QM/MM derived atomic charge schemes simultaneously for comparing the predictions of drug binding modes and their energetics. This study evaluates the comparative performance of fixed point charge based Glide XP docking and the quantum polarized ligand docking schemes. These results will provide insights on the effects of including or ignoring the drug-receptor interfacial polarization events in molecular docking simulations, which in turn, will aid the rational selection of computational methods at different levels of theory in future drug design programs. Plenty of molecular modelling tools and methods currently exist for modelling drug-receptor or protein-protein, or DNA-protein interactionssat different levels of complexities.Yet, the capasity of such tools to describevarious physico-chemical propertiesmore accuratelyis the next step ahead in currentresearch.Especially, the usage of most accurate methods in quantum mechanics(QM) is severely restricted by theirtedious nature. Though the usage of massively parallel super computing environments resulted in a tremendous improvement in molecular mechanics (MM) calculations like molecular dynamics,they are still capable of dealing with only a couple of tens to hundreds of atoms for QM methods. One such efficient strategy that utilizes thepowers of both MM and QM are the QM/MM hybrid methods. Lately, attempts have been directed towards the goal of deploying several different QM methods for betterment of force field based simulations, but with practical restrictions in place. One of such methods utilizes the inclusion of charge polarization events at the drug-receptor interface, that is not explicitly present in the MM FF.
Resumo:
Nonsteroidal antiinflammatory drugs (NSAIDs) have been shown to reduce cell growth in several tumors. Among these possible antineoplastic drugs are cyclooxygenase-2 (COX-2)-selective drugs, such as celecoxib, in which antitumoral mechanisms were evaluated in rats bearing Walker-256 (W256) tumor. W256 carcinosarcoma cells were inoculated subcutaneously (10(7) cells/rat) in rats submitted to treatment with celecoxib (25 mg kg(-1)) or vehicle for 14 days. Tumor growth, body-weight gain, and survival data were evaluated. The mechanisms, such as COX-2 expression and activity, oxidative stress, by means of enzymes and lipoperoxidation levels, and apoptosis mediators were also investigated. A reduction in tumor growth and an increased weight gain were observed. Celecoxib provided a higher incidence of survival compared with the control group. Cellular effects are probably COX-2 independent, because neither enzyme expression nor its activity, measured by tumoral PGE(2), showed significant difference between groups. It is probable that this antitumor action is dependent on an apoptotic way, which has been evaluated by the expression of the antiapoptotic protein Bcl-xL, in addition to the cellular changes observed by electronic microscopy. Celecoxib has also a possible involvement with redox homeostasis, because its administration caused significant changes in the activity of oxidative enzymes, such as catalase and superoxide dismutase. These results confirm the antitumor effects of celecoxib in W256 cancer model, contributing to elucidating its antitumoral mechanism and corroborating scientific literature about its effect on other types of cancer.
Resumo:
Anthracyclines have been widely used as antitumor agents, playing a crucial role in the successful treatment of many types of cancer, despite some side effects related to cardiotoxicity. New anthracyclines have been designed and tested, but the first ones discovered, doxorubicin and daunorubicin, continue to be the drugs of choice. Despite their extensive use in chemotherapy, little is known about the DNA repair mechanisms involved in the removal of lesions caused by anthracyclines. The anthracycline cosmomycin D is the main product isolated from Streptomyces olindensis, characterized by a peculiar pattern of glycosylation with two trisaccharide rings attached to the A ring of the tetrahydrotetracene. We assessed the induction of apoptosis (Sub-G(1)) by cosmomycin D in nucleotide excision repair-deficient fibroblasts (XP-A and XP-C) as well as the levels of DNA damage (alkaline comet assay). Treatment of XP-A and XP-C cells with cosmomycin D resulted in apoptosis in a time-dependent manner, with highest apoptosis levels observed 96 h after treatment. The effects of cosmomycin D were equivalent to those obtained with doxorubicin. The broad caspase inhibitor Z-VAD-FMK strongly inhibited apoptosis in these cells, and DNA damage induced by cosmomycin D was confirmed by alkaline comet assay. Cosmomycin D induced time-dependent apoptosis in nucleotide excision repair-deficient fibroblasts. Despite similar apoptosis levels, cosmomycin D caused considerably lower levels of DNA damage compared to doxorubicin. This may be related to differences in structure between cosmomycin D and doxorubicin.
Resumo:
This work was carried out to verify the effect of a glyphosate-based herbicide on Jundia hormones (cortisol, 17 beta-estradiol and testosterone), oocyte and swim-up fry production. Earthen ponds containing Jundia females were contaminated with glyphosate (3.6 mg/L); blood samples were collected from eight females from each treatment immediately before, or at 1, 10, 20 30 and 40 days following contamination. A typical post-stress rise in cortisol levels was observed at the 20th and 40th days following exposure to glyphosate. At the 40th day, 17 beta-estradiol was decreased in the exposed females. A similar number of oocytes were stripped out from females from both groups, however, a lower number of viable swim-up fry were obtained from the herbicide exposed females, which also had a higher liver-somatic index (LSI). The results indicate that the presence of glyphosate in water was deleterious to Rhamdia quelen reproduction, altering steroid profiles and egg viability. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Toluene and verapamil are subject to extensive oxidative metabolism mediated by CYP enzymes, and their interaction can be stereoselective. In the present study we investigated the influence of toluene inhalation on the enantioselective kinetic disposition of verapamil and its metabolite, norverapamil, in rats. Male Wistar rats (n = 6 per group) received a single dose of racemic verapamil (10 mg/kg) orally at the fifth day of nose-only toluene or air (control group) inhalation for 6 h/day (25, 50, and 100 ppm). Serial blood samples were collected from the tail up to 6 h after verapamil administration. The plasma concentrations of verapamil and norverapamil enantiomers were analyzed by LC-MS/MS by using a Chiralpak AD column. Toluene inhalation did not influence the kinetic disposition of verapamil or norverapamil enantiomers (p > 0.05, Kruskal-Wallis test) in rats. The pharmacokinetics of verapamil was enantioselective in the control group, with a higher plasma proportion of the S-verapamil (AUC 250.8 versus 120.4 ng.h.mL(-1); p <= 0.05, Wilcoxon test) and S-norverapamil (AUC 72.3 versus 52.3 ng.h.mL(-1); p <= 0.05, Wilcoxon test). Nose-only exposure to toluene at 25, 50, or 100 ppm resulted in a lack of enantioselectivity for both verapamil and norverapamil. The study demonstrates the importance of the application of enantioselective methods in studies on the interaction between solvents and chiral drugs.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The effect of tetracaine on Ca-45 efflux, cytoplasmic Ca2+ concentration [Ca2+](i), and insulin secretion in isolated pancreatic islets and beta-cells was studied. In the absence of external Ca2+, tetracaine (0.1-2.0 mM) increased the Ca-45 efflux from isolated islets in a dose-dependant manner. Tetracaine did not affect the increase in Ca-45 efflux caused by 50 mM K+ or by the association of carbachol (0.2 mM) and 50 mM K+. Tetracaine permanently increased the [Ca2+](i) in isolated beta-cells in Ca2+-free medium enriched with 2.8 mM glucose and 25 mu M D-600 (methoxiverapamil). This effect was also observed in the presence of 10 mM caffeine or 1 mu M thapsigargin. In the presence of 16.7 mM glucose, tetracaine transiently increased the insulin secretion from islets perfused in the absence and presence of external Ca2+. These data indicate that tetracaine mobilises Ca2+ from a thapsigargin-insensitive store and stimulates insulin secretion in the absence of extracellular Ca2+. The increase in Ca-45 efflux caused by high concentrations of K+ and by carbachol indicates that tetracaine did not interfere with a cation or inositol triphosphate sensitive Ca2+ pool in beta-cells.
Resumo:
Augmented glucose-stimulated insulin secretion (GSIS) is an adaptive mechanism exhibited by pancreatic islets from insulin-resistant animal models. Gap junction proteins have been proposed to contribute to islet function. As such, we investigated the expression of connexin 36 (Cx36), connexin 43 (Cx43), and the glucose transporter Glut2 at mRNA and protein levels in pancreatic islets of dexamethasone (DEX)-induced insulin-resistant rats. Study rats received daily injections of DEX (1 mg/kg body mass, i.p.) for 5 days, whereas control rats (CTL) received saline solution. DEX rats exhibited peripheral insulin resistance, as indicated by the significant postabsorptive insulin levels and by the constant rate for glucose disappearance (K-ITT). GSIS was significantly higher in DEX islets (1.8-fold in 16.7 mmol/L glucose vs. CTL, p < 0.05). A significant increase of 2.25-fold in islet area was observed in DEX vs. CTL islets (p < 0.05). Cx36 mRNA expression was significantly augmented, Cx43 diminished, and Glut2 mRNA was unaltered in islets of DEX vs. CTL (p < 0.05). Cx36 protein expression was 1.6-fold higher than that of CTL islets (p < 0.05). Glut2 protein expression was unaltered and Cx43 was not detected at the protein level. We conclude that DEX-induced insulin resistance is accompanied by increased GSIS and this may be associated with increase of Cx36 protein expression.
Resumo:
Food restriction (FR) has been shown to induce important morphological changes in rat myocardium. However, its influence on myocardial performance is not completely defined. We examined the effects of chronic FR on cardiac muscle function and morphology. Sixty-day-old Wistar-Kyoto rats were fed a control (C) or a restricted diet (daily intake reduced to 50% of the amount of food consumed by the control group) for 90 days. Myocardial performance was studied in isolated left ventricular (LV) papillary muscle. Fragments of the LV free wall were analysed by light microscopy, and the ultrastructure of the myocardium was examined in the LV papillary muscle. The myocardial collagen concentration was also evaluated. FR decreased body weight (BW) and LV weight (LVW); the LVW/BW ratio was higher in the restricted group (C, 1.86 +/- 0.17 mg/g; FR, 2.19 +/- 0.31 mg/g; p < 0.01). In the FR animals, the cardiac fibers were polymorphic, some of them were of small diameter and others presented lateral infoldings; the ultrastructural alterations were focal and included reduction of sarcoplasmic content, absence and (or) disorganization of myofilaments and Z line, numerous electron dense and polymorphic mitochondria, and deep infoldings of the plasma membrane. The hydroxyproline concentration was higher in the FR animals (p < 0.01). FR prolonged the contraction and relaxation time of the papillary muscle and did not change its ability to contract and shorten. In conclusion, although a 90-day period of FR caused striking myocardial ultrastructural alterations and increased the collagen concentration, it only minimally affected the mechanical function.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the present study was to investigate the effects of hydrocortisone during the prenatal period and its later repercussions on the fertility and sexual behavior of male rats. Pregnant rats were treated (s.c.) with hydrocortisone acetate, at 1.5 mg/day on the 17th, 18th, and 19th days of gestation. Decreased body weight and no alteration in anogenital distance were observed in male offspring. Adulthood, presented reductions of body weight, plasma testosterone levels, and seminal-vesicle wet weight without secretion as well as no alteration in the wet weights of the testes, epididymis, and seminal vesicle with secretion in the treated group. Males exposed to hydrocortisone during the prenatal period were able to mate with normal females, which became pregnant but exhibited an increased number of post-implantation losses. In spite of this, these treated males exhibited decreased male sexual behavior and the appearance of female sexual behavior after these male rats were castrated and pretreated with exogenous estrogen. These results indicate that exposure to hydrocortisone in the later stages of pregnancy may have a long-term effect on the fertility and sexual behavior of mate rats, suggesting an incomplete masculinization and defeminization of the central nervous system. (C) 2003 Elsevier B.V. (USA). All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This research has evaluated the effects of enteral supplementation of glutamine in clastogens and genotoxic damages caused by the acute administration of cisplatin. For this. it was utilized Swiss mice distributed in eight experimental groups: control, cisplatin, glutamine, in three different doses and the combination of these with cisplatin. The results show that the glutamine was present in neither genotoxic nor mutagenic activity. When in association with glutamine and cisplatin, in simultaneous treatment, it was verified the frequency decreased of micronuclei and comets. The damage reduction percentages to the micronucleus ranged from 95.4 to 91.8% after 24 h of administration of these compounds and 76.7 to 56.8% after 48 h. In the same time the damage reduction percentages to the comet test ranged from 117.0 to 115.0%. The results suggest that glutamine is capable of preventing genotoxic and mutagenic damage according to the experimental design proposed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The effect of uroguanylin (UGN) oil K(+) and H(+) secretion in the renal tubules of the rat kidney was studied using in vivo stationary microperfusion. For the study of K(+) secretion, a tubule was Punctured to inject a column of FDC-green-colored Ringer's solution with 0.5 mmol KCI/L 10(-6)(mol UGN/L, and oil was Used to block fluid flow. K(+) activity and transepithelial potential differences (PD) were measured with double microelectrodes (K(+) ion-selective resin vs. reference) in the distal tubules of the same nephron. During perfusion, K(+) activity rose exponentially, from 0.5 mmol/L to stationary concentration, allowing for the calculation of K(+) secretion J(K)). JK increased from 0.63 +/- 0.06 nmol.cm(-2).s(-1) in the control croup to 0.85 +/- 0.06 in the UGN group (p < 0.01). PD was -51.0 +/- 5.3 mV in the control group and -50.3 +/- 4.98 mV in the UGN group. In the presence of 10(-7) mol iberiotoxin/L, the UGN effect was abolished: JK was 0.37 +/- 0.038 nmol-cm(-2).s(-1) in the absence of, and 0.38 +/- 0.025 in the presence of, UGN. indicating its action oil rnaxi-K channels. In another series of experiments, renal tubule acidification was studied, using similar method: proximal and distal tubules were perfused with solutions containing 25 mmol NaHCO(3)/L. Acidification half-time was increased both in proximal and distal segments and, as a consequence, bicarbonate reabsorption decreased in the presence of UGN (in proximal tubules, from 2.40 +/- 0.26 to 1.56 +/- 0.21 nmol-cm(-2).s(-1)). When the Na(+)/H(+) exchanger was inhibited by 10(-4) mol hexamethylene amiloride (HMA)/L, the control and UGN groups were not significantly different. In the late distal tubule, after HMA, UGN significantly reduced J(HCO3)(-). indicating all effect of UGN oil H(+)-ATPase. These data show that UGN stimulated J(K)(+) by actin, oil maxi-K channels. and decreased J(HCO3)(-) by acting on NHE3 in proximal and H(+)-ATPase in distal tubules.
Resumo:
Superoxide radical (O2-) is a free radical that may be involved in various toxic processes. Cu-Zn superoxide dismutase catalyses the dismutation of the superoxide free radical and protects cells from oxidative damage, and it has been used clinically. The concentration of Ni2+ and Cu-Zn superoxide dismutase activity were measured in lungs of rats at time intervals of 5, 12, 19, 26, 33, and 40 days following an intratracheal injection of 127 nmol of NiCl2. Nickel chloride increased nickel content and resulted in a significant increase of Cu-Zn superoxide dismutase activity in lungs. This elevation of Cu-Zn superoxide dismutase activity was highest on the 12th day (approximately threefold) and is at levels comparable to controls rats on day 40 onwards. Since Cu-Zn superoxide dismutase activity was increased in lung throughout our experimental period without corresponding increases of Cu2+ and Zn2+, we speculate that the elevation of Cu-Zn superoxide dismutase activity might be due to an increased half-life of the enzyme, induced by nickel.