960 resultados para Peri-implant bones
Resumo:
PURPOSE The purpose of this study was to document the long-term outcome of Brånemark implants installed in augmented maxillary bone and to identify parameters that are associated with peri-implant bone level. MATERIAL AND METHODS Patients of a periodontal practice who had been referred to a maxillofacial surgeon for iliac crest bone grafting in the atrophic maxilla were retrospectively recruited. Five months following grafting, they received 7-8 turned Brånemark implants. Following submerged healing of another 5 months, implants were uncovered and restorative procedures for fixed rehabilitation were initiated 2-3 months thereafter. The primary outcome variable was bone level defined as the distance from the implant-abutment interface to the first visible bone-to-implant contact. Secondary outcome variables included plaque index, bleeding index, probing depth, and levels of 40 species in subgingival plaque samples as identified by means of checkerboard DNA-DNA hybridization. RESULTS Nine out of 16 patients (eight females, one male; mean age 59) with 71 implants agreed to come in for evaluation after on average 9 years (SD 4; range 3-13) of function. One implant was deemed mobile at the time of inspection. Clinical conditions were acceptable with 11% of the implants showing pockets ≥ 5 mm. Periodontopathogens were encountered frequently and in high numbers. Clinical parameters and bacterial levels were highly patient dependent. The mean bone level was 2.30 mm (SD 1.53; range 0.00-6.95), with 23% of the implants demonstrating advanced resorption (bone level > 3 mm). Regression analysis showed a significant association of the patient (p < .001) and plaque index (p = .007) with bone level. CONCLUSIONS The long-term outcome of Brånemark implants installed in iliac crest-augmented maxillary bone is acceptable; however, advanced peri-implant bone loss is rather common and indicative of graft resorption. This phenomenon is patient dependent and seems also associated with oral hygiene.
Resumo:
The concept of platform switching has been introduced to implant dentistry based on clinical observations of reduced peri-implant crestal bone loss. However, published data are controversial, and most studies are limited to 12 months. The aim of the present randomized clinical trial was to test the hypothesis that platform switching has a positive impact on crestal bone-level changes after 3 years. Two implants with a diameter of 4 mm were inserted crestally in the posterior mandible of 25 patients. The intraindividual allocation of platform switching (3.3-mm platform) and the standard implant (4-mm platform) was randomized. After 3 months of submerged healing, single-tooth crowns were cemented. Patients were followed up at short intervals for monitoring of healing and oral hygiene. Statistical analysis for the influence of time and platform type on bone levels employed the Brunner-Langer model. At 3 years, the mean radiographic peri-implant bone loss was 0.69 ± 0.43 mm (platform switching) and 0.74 ± 0.57 mm (standard platform). The mean intraindividual difference was 0.05 ± 0.58 mm (95% confidence interval: -0.19, 0.29). Crestal bone-level alteration depended on time (p < .001) but not on platform type (p = .363). The present randomized clinical trial could not confirm the hypothesis of a reduced peri-implant crestal bone loss, when implants had been restored according to the concept of platform switching.
Resumo:
AIM To provide an overview on the biology and soft tissue wound healing around teeth and dental implants. MATERIAL AND METHODS This narrative review focuses on cell biology and histology of soft tissue wounds around natural teeth and dental implants. RESULTS AND CONCLUSIONS The available data indicate that: (a) Oral wounds follow a similar pattern. (b) The tissue specificities of the gingival, alveolar and palatal mucosa appear to be innately and not necessarily functionally determined. (c) The granulation tissue originating from the periodontal ligament or from connective tissue originally covered by keratinized epithelium has the potential to induce keratinization. However, it also appears that deep palatal connective tissue may not have the same potential to induce keratinization as the palatal connective tissue originating from an immediately subepithelial area. (d) Epithelial healing following non-surgical and surgical periodontal therapy appears to be completed after a period of 7–14 days. Structural integrity of a maturing wound between a denuded root surface and a soft tissue flap is achieved at approximately 14-days post-surgery. (e) The formation of the biological width and maturation of the barrier function around transmucosal implants requires 6–8 weeks of healing. (f) The established peri-implant soft connective tissue resembles a scar tissue in composition, fibre orientation, and vasculature. (g) The peri-implant junctional epithelium may reach a greater final length under certain conditions such as implants placed into fresh extraction sockets versus conventional implant procedures in healed sites.
Resumo:
Purpose.This retrospective cohort study evaluated factors for peri-implant bone level changes (ΔIBL) associated with an implant type with inner-cone implant-abutment connection, rough neck surface, and platform switching (AT). Materials and Methods. All AT placed at the Department of Prosthodontics of the University of Bern between January 2004 and December 2005 were included in this study. All implants were examined by single radiographs using the parallel technique taken at surgery (T0) and obtained at least 6 months after surgery (T1). Possible influencing factors were analysed first using t-test (normal distribution) or the nonparametric Wilcoxon test (not normal distribution), and then a mixed model q variance analysis was performed. Results. 43 patients were treated with 109 implants. Five implants in 2 patients failed (survival rate: 95.4%).Mean ΔIBL in group 1 (T1: 6–12 months after surgery) was −0.65 ± 0.82mm and −0.69 ± 0.82mm in group 2 (T1: >12 months after surgery) (
Resumo:
BACKGROUND Scientific data and clinical observations appear to indicate that an adequate width of attached mucosa may facilitate oral hygiene procedures thus preventing peri-implant inflammation and tissue breakdown (eg, biologic complications). Consequently, in order to avoid biologic complications and improve long-term prognosis, soft tissue conditions should be carefully evaluated when implant therapy is planned. At present the necessity and time-point for soft tissue grafting (eg, prior to or during implant placement or after healing) is still controversially discussed while clinical recommendations are vague. OBJECTIVES To provide a review of the literature on the role of attached mucosa to maintain periimplant health, and to propose a decision tree which may help the clinician to select the appropriate surgical technique for increasing the width of attached mucosa. RESULTS The available data indicate that ideally, soft tissue conditions should be optimized by various grafting procedures either before or during implant placement or as part of stage-two surgery. In cases, where, despite insufficient peri-implant soft tissue condition (ie, lack of attached mucosa or movements caused by buccal frena), implants have been uncovered and/or loaded, or in cases where biologic complications are already present (eg, mucositis, peri-implantitis), the treatment appears to be more difficult and less predictable. CONCLUSION Soft tissue grafting may be important to prevent peri-implant tissue breakdown and should be considered when dental implants are placed. The presented decision tree may help the clinician to select the appropriate grafting technique.
Resumo:
The present study examined the impact of implant surface modifications on osseointegration in an osteoporotic rodent model. Sandblasted, acid-etched titanium implants were either used directly (control) or were further modified by surface conditioning with NaOH or by coating with one of the following active agents: collagen/chondroitin sulphate, simvastatin, or zoledronic acid. Control and modified implants were inserted into the proximal tibia of aged ovariectomised (OVX) osteoporotic rats (n = 32/group). In addition, aged oestrogen competent animals received either control or NaOH conditioned implants. Animals were sacrificed 2 and 4 weeks post-implantation. The excised tibiae were utilised for biomechanical and morphometric readouts (n = 8/group/readout). Biomechanical testing revealed at both time points dramatically reduced osseointegration in the tibia of oestrogen deprived osteoporotic animals compared to intact controls irrespective of NaOH exposure. Consistently, histomorphometric and microCT analyses demonstrated diminished bone-implant contact (BIC), peri-implant bone area (BA), bone volume/tissue volume (BV/TV) and bone-mineral density (BMD) in OVX animals. Surface coating with collagen/chondroitin sulphate had no detectable impact on osseointegration. Interestingly, statin coating resulted in a transient increase in BIC 2 weeks post-implantation; which, however, did not correspond to improvement of biomechanical readouts. Local exposure to zoledronic acid increased BIC, BA, BV/TV and BMD at 4 weeks. Yet this translated only into a non-significant improvement of biomechanical properties. In conclusion, this study presents a rodent model mimicking severely osteoporotic bone. Contrary to the other bioactive agents, locally released zoledronic acid had a positive impact on osseointegration albeit to a lesser extent than reported in less challenging models.
Resumo:
PURPOSE The aim of this work was to study the peri-implant soft tissues response, by evaluating both the recession and the papilla indexes, of patients treated with implants with two different configurations. In addition, data were stratified by tooth category, smoking habit and thickness of buccal bone wall. MATERIALS AND METHODS The clinical trial was designed as a prospective, randomized-controlled multicenter study. Adults in need of one or more implants replacing teeth to be removed in the maxilla within the region 15-25 were recruited. Following tooth extraction, the site was randomly allocated to receive either a cylindrical or conical/cylindrical implant. The following parameters were studied: (i) Soft tissue recession (REC) measured by comparing the gingival zenith (GZ) score at baseline (permanent restoration) with that of the yearly follow-up visits over a period of 3 years (V1, V2 and V3). (ii) Interdental Papilla Index (PI): PI measurements were performed at baseline and compared with that of the follow-up visits. In addition, data were stratified by different variables: tooth category: anterior (incisors and canine) and posterior (first and second premolar); smoking habit: patient smoker (habitual or occasional smoker at inclusion) or non-smoker (non-smoker or ex-smoker at inclusion) and thickness of buccal bone wall (TB): TB ≤ 1 mm (thin buccal wall) or TB > 1 mm (thick buccal wall). RESULTS A total of 93 patients were treated with 93 implants. At the surgical re-entry one implant was mobile and then removed; moreover, one patient was lost to follow-up. Ninety-one patients were restored with 91 implant-supported permanent single crowns. After the 3-year follow-up, a mean gain of 0.23 mm of GZ was measured; moreover, 79% and 72% of mesial and distal papillae were classified as >50%/ complete, respectively. From the stratification analysis, not significant differences were found between the mean GZ scores of implants with TB ≤ 1 mm (thin buccal wall) and TB > 1 mm (thick buccal wall), respectively (P < 0.05, Mann-Whitney U-test) at baseline, at V1, V2 and V3 follow-up visits. Also, the other variables did not seem to influence GZ changes over the follow-up period. Moreover, a re-growth of the interproximal mesial and distal papillae was the general trend observed independently from the variables studied. CONCLUSIONS Immediate single implant treatment may be considered a predictable option regarding soft tissue stability over a period of 3 years of follow-up. An overall buccal soft tissue stability was observed during the GZ changes from the baseline to the 3 years of follow-up with a mean GZ reduction of 0.23 mm. A nearly full papillary re-growth can be detectable over a minimum period of 2 years of follow-up for both cylindrical and conical/cylindrical implants. Both the interproximal papilla filling and the midfacial mucosa stability were not influenced by variables such as type of fixture configuration, tooth category, smoke habit, and thickness of buccal bone wall of ≤ 1 mm (thin buccal wall).
Resumo:
OBJECTIVE To determine the microbiota at implants and adjacent teeth 10 years after placement of implants with a sandblasted and acid-etched surface. MATERIAL AND METHODS Plaque samples obtained from the deepest sites of 504 implants and of 493 adjacent teeth were analyzed for certain bacterial species associated with periodontitis, for staphylococci, for aerobic gram-negative rods, and for yeasts using nucleic acid-based methods. RESULTS Species known to be associated with periodontitis were detectable at 6.2-78.4% of the implants. Significantly higher counts at implants in comparison with teeth were assessed for Tannerella forsythia, Parvimonas micra, Fusobacterium nucleatum/necrophorum, and Campylobacter rectus. Higher counts of periodontopathogenic species were detectable at implants of current smokers than at those of non-smokers. In addition, those species were found in higher quantities at implants of subjects with periodontitis. The prevalence of Prevotella intermedia, Treponema denticola, C. rectus, and moreover of Staphylococcus warneri might be associated with peri-implant inflammation. Selected staphylococcal species (not Staphylococcus aureus), aerobic gram-negative rods, and yeasts were frequently detected, but with the exception of S. warneri, they did not show any association with periodontal or peri-implant diseases. CONCLUSIONS Smoking and periodontal disease are risk factors for colonization of periodontopathic bacteria at implants. Those bacterial species may play a potential role in peri-implant inflammation. The role of S. warneri needs further validation.
Resumo:
OBJECTIVES To assess a selection of host-derived biomarkers in peri-implant sulcus fluid (PISF) and gingival crevicular fluid (GCF) from adjacent teeth 10 years following implant placement. MATERIAL AND METHODS Peri-implant sulcus fluid and GCF samples obtained from the deepest sites of 504 implants and 493 adjacent teeth were analysed for levels of interleukin (IL)-1β, matrix metalloproteinase (MMP)-3, MMP-8, MMP-1, and MMP-1 bound to tissue inhibitor of MMP (TIMP)-1 (MMP-1/TIMP-1) by enzyme-linked immunosorbent assay (ELISA) technique. RESULTS Overall, MMP-8 was detected in 90% of the sites. In more than 50% of the sites, IL-1β was identified while in 30% of the sites MMP-1, MMP-1/TIMP-1 and MMP-3 were found over the detection level. Increased biomarkers levels from PISF and GCF were positively correlated (r = 0.375-0.702; P < 0.001). However, no qualitative and quantitative differences were found between PISF and GCF. The levels of MMP-1 were negatively correlated with those of MMP-1/TIMP-1 at implants (r = -0.644; P < 0.001). Median MMP-1 levels at implants were high (5.17 pg/site) in subjects with severe chronic periodontitis and low in patients with mild-to-moderate chronic periodontitis (0 pg/site; P = 0.026) or gingivitis (0 pg/site; P = 0.034). Levels of IL-1β were found to be different in GCF according to the periodontal conditions (P = 0.001) with the highest level found in mild-to-moderate periodontitis (6.2 pg/site). Clinical attachment levels at implants demonstrated an inverse correlation with MMP-1/TIMP-1 (r = -0.147; P = 0.001). CONCLUSIONS Increased levels of MMP-8 and IL-1β in PISF or GCF may be associated with inflammation around teeth and implants while lower levels of MMP-1/TIMP-1 may be an indicator of disease progression around implants.
Resumo:
Con el advenimiento de los implantes y con ellos la opción de las sobredentaduras, la pasividad comienza a jugar un papel fundamental para darle mejor pronóstico a la rehabilitación y prolongar la vida útil de los implantes. Dentro de este análisis es que se presenta el caso clínico de un paciente portador de prótesis completa superior e inferior, tratado dentro del marco de la Carrera de Especialista en Prostodoncia de la Universidad Nacional de Cuyo. El tratamiento propuesto al paciente fue: dos implantes en el maxilar inferior con una sobredentadura retenida por pilares esféricos y cuatro implantes superiores con una sobredentadura retenida por una barra, la cual feruliza los implantes. La barra superior fue colada seccionada en cuatro partes, unidas en boca y luego soldadas mediante tecnología láser. De esta forma se busca obtener pasividad para evitar aflojamiento de tornillos de fijación, fractura de tornillos o implantes, reabsorción de los tejidos óseo perimplantarios o pérdida de la oseointegración de los implantes.
Resumo:
O biótipo gengival, definido como a espessura da gengiva no sentido vestíbulo-lingual, desempenha importante papel na homeostasia dos tecidos periodontais, podendo ser considerado um preditor no sucesso em longo prazo das terapias periodontais e periimplantares. Assim sendo, é de suma importância reconhecer as dimensões do tecido gengival e as diferentes formas de qualificá-lo e principalmente quantificá-lo. Apesar de haver descrito na literatura inúmeros métodos para este fim, existem poucos estudos comparando a efetividade de um método em relação a outro. Desta maneira, este estudo buscou avaliar se há concordância entre avaliações clínicas e tomográficas na classificação do biótipo gengival, se existe correlação entre o biótipo gengival e a espessura óssea subjacente, além de descrever um novo método de tomada tomográfica que permita a análise quantitativa do biótipo gengival. Foram avaliados 12 indivíduos os quais realizaram tomografias computadorizadas de feixe cônico como exame imaginológico de diagnóstico ou planejamento pré-cirúrgico. Em cada paciente foram realizados quatro diferentes métodos de avaliação qualitativa da espessura gengival (transparência a sondagem, transgengival, visual através de fotografia e tomográfico), dois métodos de avaliação quantitativa (transgengival e tomográfico) da espessura gengival e avaliação da espessura óssea através da tomografia computadorizada de feixe cônico. Os resultados foram avaliados estatisticamente através do teste KAPPA, Teste t pareado e coeficiente de correlação de Pearson (pM0.05). O novo método de tomada tomográfica descrito neste estudo é eficaz para avaliação do biótipo gengival, havendo grande concordância (86,1% Kappa 0,51) e forte correlação (r=0,824) entre ele e o método transgengival (padrão ouro). A correlação entre a espessura óssea e a espessura gengival foi moderada quando utilizado o método transgengival e tomográfico (r=0,567 e r=0,653 respectivamente).
Resumo:
Globally, more than 1000 tonnes of titanium (Ti) is implanted into patients in the form of biomedical devices on an annual basis. Ti is perceived to be ‘biocompatible’ owing to the presence of a robust passive oxide film (approx. 4 nm thick) at the metal surface. However, surface deterioration can lead to the release of Ti ions, and particles can arise as the result of wear and/or corrosion processes. This surface deterioration can result in peri-implant inflammation, leading to the premature loss of the implanted device or the requirement for surgical revision. Soft tissues surrounding commercially pure cranial anchorage devices (bone-anchored hearing aid) were investigated using synchrotron X-ray micro-fluorescence spectroscopy and X-ray absorption near edge structure. Here, we present the first experimental evidence that minimal load-bearing Ti implants, which are not subjected to macroscopic wear processes, can release Ti debris into the surrounding soft tissue. As such debris has been shown to be pro-inflammatory, we propose that such distributions of Ti are likely to effect to the service life of the device.
Resumo:
Introduction: Infiltration of organic fluids and microorganisms at the abutment/implant interface may result in bacterial infection of peri-implant tissues. Internal colonization of periodontal pathogens may be caused by bacteria trapped during installation or penetration of abutment/implant leakage. The aim of this study was to detect periodontal pathogens in the internal area of dental implants before loading. Materials and Methods: Seventy-eight implants in 32 partially edentulous subjects were selected for this evaluation. A bacterial biofilm sample of the internal surface of each implant was taken and analyzed for the presence of 40 microorganisms by checkerboard DNA-DNA hybridization, prior to installation of healing or any other prosthetic abutment. Discussion: Bacteria were detected in 20 patients (62.5%), distributed in 41 implants (52.6%). Forty-seven percent of implants showed no bacterial detection. Spontaneous early implant exposure to oral cavity during the healing period was not significant (P >0.05) to increase bacterial prevalence, but implants placed at mandible had higher bacterial prevalence than maxillary ones. Conclusion: The internal surface of dental implants can serve as a reservoir of periodontal pathogens for future implant/abutment interface.
Resumo:
Os tratamentos odontológicos com implantes dentários, têm sido bem documentados nos últimos 40 anos e com grandes sucessos. O implante dentário instalado no local de dentes perdidos deve envolver sempre um correto planejamento pelo médico dentista. Nesta área é muito importante o conhecimento do microbioma que envolve o implante dentário, desde seu planejamento até a reabilitação final. O tempo exato com que o microbioma se forma, assim como, os microrganismos presentes são fundamentais para a correta execução e êxito do implante. Contudo a contaminação interna dos implantes reabilitados, os componentes extracelulares de microrganismos, como as endotoxinas, têm uma enorme influência no sucesso dos implantes. Além disso, o conhecimento das superfícies dos implantes e a relação com a presença microbiana também muito importante. O presente estudo realizou uma revisão bibliográfica sobre o microbioma oral e sua relação com a infecção periimplantar, discutindo diversos estudos, tanto clássicos como atuais. Embora se possa concluir que o microbioma periimplantar é caracterizado pelo microbioma anterior à instalação dos implantes dentários, podemos referir a necessidade de mais estudos de modo a elucidar melhor o planejamento e a longevidade dos tratamentos com implantes dentários.
Resumo:
A doença periodontal é caracterizada como um conjunto de condições inflamatórias, de carater crônico ou agudo, e de origem bacteriana, que começa por afetar o tecido gengival e pode levar, com o tempo, à perda dos tecidos de suporte dos dentes. As reações inflamatórias e imunológicas à placa bacteriana representam as características predominantes da gengivite e da periodontite. A reação inflamatória é visível, microscópica e clinicamente, no periodonto afetado e representa a reação do hospedeiro à microbiota da placa e seus produtos. O processo de infecção no sulco periodontal leva, inicialmente, a formação de uma mucosite periodontal, que pode ser definida como uma inflamação dos tecidos moles periodontáis, sem ocasionar perda óssea, sendo reversível, se o seu diagnóstico for atempado. Os processos inflamatórios e imunológicos atuam nos tecidos gengivais para proteger contra o agressãoes microbianas, impedindo os microrganismos de se disseminarem ou invadirem os tecidos. Em alguns casos, essas reações de defesa do hospedeiro podem ser prejudiciais porque também são passíveis de danificar as células e estruturas vizinhas do tecido conjuntivo. Além disso, as reações inflamatórias e imunológicas cuja extensão alcança níveis mais profundos do tecido conjuntivo, além da base do sulco, podem envolver o osso alveolar nesse processo destrutivo. Assim, tais processos defensivos podem, paradoxalmente, ser os responsáveis pela maior parte da lesão tecidual observada na gengivite e na periodontite. O objectivo desse trabalho é fazer uma revisão de literatura específica sobre a etiologia da doença periodontal respectivamente. Serão descritos os principais agentes microbianos que estão relacionados com a doença periodontal e a forma como influenciam o desenvolvimento da doença, procurando desta forma contribuir para a procura de tratamentos mais eficientes.