929 resultados para Perfusion Spect


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Cardiac risk assessment in cancer patients has not extensively been studied. We evaluated the role of stress myocardial perfusion imaging (MPI) in predicting cardiovascular outcomes in cancer patients undergoing non-cardiac surgery. ^ Methods. A retrospective chart review was performed on 507 patients who had a MPI from 01/2002 - 03/2003 and underwent non-cardiac surgery. Median follow-up duration was 1.5 years. Cox proportional hazard model was used to determine the time-to-first event. End points included total cardiac events (cardiac death, myocardial infarction (MI) and coronary revascularization), cardiac death, and all cause mortality. ^ Results. Of all 507 MPI studies 146 (29%) were abnormal. There were significant differences in risk factors between normal and abnormal MPI groups. Mean age was 66±11 years, with 60% males and a median follow-up duration of 1.8 years (25th quartile=0.8 years, 75th quartile=2.2 years). The majority of patients had an adenosine stress study (53%), with fewer exercise (28%) and dobutamine stress (16%) studies. In the total group there were 39 total cardiac events, 31 cardiac deaths, and 223 all cause mortality events during the study. Univariate predictors of total cardiac events included CAD (p=0.005), previous MI (p=0.005), use of beta blockers (p=0.002), and not receiving chemotherapy (p=0.012). Similarly, the univariate predictors of cardiac death included previous MI (p=0.019) and use of beta blockers (p=0.003). In the multivariate model for total cardiac events, age at surgery (HR 1.04, p=0.030), use of beta blockers (HR 2.46; p=0.011), dobutamine MPI (HR 3.08; p=0.018) and low EF (HR 0.97; p=0.02) were significant predictors of worse outcomes. In the multivariate model for predictors of cardiac death, beta blocker use (HR=2.74; p=0.017) and low EF (HR=0.95; p<0.003) were predictors of cardiac death. The only univariate MPI predictor of total cardiac events was scar severity (p=0.005). While MPI predictors of cardiac death were scar severity (p= 0.001) and ischemia severity (p=0.02). ^ Conclusions. Stress MPI is a useful tool in predicting long term outcomes in cancer patients undergoing surgery. Ejection fraction and severity of myocardial scar are important factors determining long term outcomes in this group.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate calculation of absorbed dose to target tumors and normal tissues in the body is an important requirement for establishing fundamental dose-response relationships for radioimmunotherapy. Two major obstacles have been the difficulty in obtaining an accurate patient-specific 3-D activity map in-vivo and calculating the resulting absorbed dose. This study investigated a methodology for 3-D internal dosimetry, which integrates the 3-D biodistribution of the radionuclide acquired from SPECT with a dose-point kernel convolution technique to provide the 3-D distribution of absorbed dose. Accurate SPECT images were reconstructed with appropriate methods for noise filtering, attenuation correction, and Compton scatter correction. The SPECT images were converted into activity maps using a calibration phantom. The activity map was convolved with an $\sp{131}$I dose-point kernel using a 3-D fast Fourier transform to yield a 3-D distribution of absorbed dose. The 3-D absorbed dose map was then processed to provide the absorbed dose distribution in regions of interest. This methodology can provide heterogeneous distributions of absorbed dose in volumes of any size and shape with nonuniform distributions of activity. Comparison of the activities quantitated by our SPECT methodology to true activities in an Alderson abdominal phantom (with spleen, liver, and spherical tumor) yielded errors of $-$16.3% to 4.4%. Volume quantitation errors ranged from $-$4.0 to 5.9% for volumes greater than 88 ml. The percentage differences of the average absorbed dose rates calculated by this methodology and the MIRD S-values were 9.1% for liver, 13.7% for spleen, and 0.9% for the tumor. Good agreement (percent differences were less than 8%) was found between the absorbed dose due to penetrating radiation calculated from this methodology and TLD measurement. More accurate estimates of the 3-D distribution of absorbed dose can be used as a guide in specifying the minimum activity to be administered to patients to deliver a prescribed absorbed dose to tumor without exceeding the toxicity limits of normal tissues. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we present a novel method to compensate the movement in images acquired during free breathing using first-pass gadolinium enhanced, myocardial perfusion magnetic resonance imaging (MRI). First, we use independent component analysis (ICA) to identify the optimal number of independent components (ICs) that separate the breathing motion from the intensity change induced by the contrast agent. Then, synthetic images are created by recombining the ICs, but other then in previously published work (Milles et al. 2008), we omit the component related to motion, and therefore, the resulting reference image series is free of motion. Motion compensation is then achieved by using a multi-pass non-rigid image registration scheme. We tested our method on 15 distinct image series (5 patients) consisting of 58 images each and we validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration. The average correlation to the manually obtained curves before registration 0:89 0:11 was increased to 0:98 0:02

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Images acquired during free breathing using first-pass gadolinium-enhanced myocardial perfusion magnetic resonance imaging (MRI) exhibit a quasiperiodic motion pattern that needs to be compensated for if a further automatic analysis of the perfusion is to be executed. In this work, we present a method to compensate this movement by combining independent component analysis (ICA) and image registration: First, we use ICA and a time?frequency analysis to identify the motion and separate it from the intensity change induced by the contrast agent. Then, synthetic reference images are created by recombining all the independent components but the one related to the motion. Therefore, the resulting image series does not exhibit motion and its images have intensities similar to those of their original counterparts. Motion compensation is then achieved by using a multi-pass image registration procedure. We tested our method on 39 image series acquired from 13 patients, covering the basal, mid and apical areas of the left heart ventricle and consisting of 58 perfusion images each. We validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration of 13 patient data sets (39 distinct slices). We compared linear, non-linear, and combined ICA based registration approaches and previously published motion compensation schemes. Considering run-time and accuracy, a two-step ICA based motion compensation scheme that first optimizes a translation and then for non-linear transformation performed best and achieves registration of the whole series in 32 ± 12 s on a recent workstation. The proposed scheme improves the Pearsons correlation coefficient between manually and automatically obtained time?intensity curves from .84 ± .19 before registration to .96 ± .06 after registration

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantification of neurotransmission Single-Photon Emission Computed Tomography (SPECT) studies of the dopaminergic system can be used to track, stage and facilitate early diagnosis of the disease. The aim of this study was to implement QuantiDOPA, a semi-automatic quantification software of application in clinical routine to reconstruct and quantify neurotransmission SPECT studies using radioligands which bind the dopamine transporter (DAT). To this end, a workflow oriented framework for the biomedical imaging (GIMIAS) was employed. QuantiDOPA allows the user to perform a semiautomatic quantification of striatal uptake by following three stages: reconstruction, normalization and quantification. QuantiDOPA is a useful tool for semi-automatic quantification inDAT SPECT imaging and it has revealed simple and flexible

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of motion compensation algorithms is run on the challenge data including methods that optimize only a linear transformation, or a non-linear transformation, or both – first a linear and then a non-linear transformation. Methods that optimize a linear transformation run an initial segmentation of the area of interest around the left myocardium by means of an independent component analysis (ICA) (ICA-*). Methods that optimize non-linear transformations may run directly on the full images, or after linear registration. Non-linear motion compensation approaches applied include one method that only registers pairs of images in temporal succession (SERIAL), one method that registers all image to one common reference (AllToOne), one method that was designed to exploit quasi-periodicity in free breathing acquired image data and was adapted to also be usable to image data acquired with initial breath-hold (QUASI-P), a method that uses ICA to identify the motion and eliminate it (ICA-SP), and a method that relies on the estimation of a pseudo ground truth (PG) to guide the motion compensation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we compared contrast-enhanced ultrasound perfusion imaging with magnetic resonance perfusion-weighted imaging or perfusion computed tomography for detecting normo-, hypo-, and nonperfused brain areas in acute middle cerebral artery stroke. We performed high mechanical index contrast-enhanced ultrasound perfusion imaging in 30 patients. Time-to-peak intensity of 10 ischemic regions of interests was compared to four standardized nonischemic regions of interests of the same patient. A time-to-peak >3 s (ultrasound perfusion imaging) or >4 s (perfusion computed tomography and magnetic resonance perfusion) defined hypoperfusion. In 16 patients, 98 of 160 ultrasound perfusion imaging regions of interests of the ischemic hemisphere were classified as normal, and 52 as hypoperfused or nonperfused. Ten regions of interests were excluded due to artifacts. There was a significant correlation of the ultrasound perfusion imaging and magnetic resonance perfusion or perfusion computed tomography (Pearson`s chi-squared test 79.119, p < 0.001) (OR 0.1065, 95% CI 0.06-0.18). No perfusion in ultrasound perfusion imaging (18 regions of interests) correlated highly with diffusion restriction on magnetic resonance imaging (Pearson's chi-squared test 42.307, p < 0.001). Analysis of receiver operating characteristics proved a high sensitivity of ultrasound perfusion imaging in the diagnosis of hypoperfused area under the curve, (AUC = 0.917; p < 0.001) and nonperfused (AUC = 0.830; p < 0.001) tissue in comparison with perfusion computed tomography and magnetic resonance perfusion. We present a proof of concept in determining normo-, hypo-, and nonperfused tissue in acute stroke by advanced contrast-enhanced ultrasound perfusion imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reproduced by Armed Services Technical Information Agency, Arlington, Va.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES We sought to determine whether the transmural extent of scar (TES) explains discordances between dobutamine echocardiography (DbE) and thallium single-photon emission computed tomography (Tl-SPECT) in the detection of viable myocardium (VM). BACKGROUND Discrepancies between DbE and Tl-SPECT are often attributed to differences between contractile reserve and membrane integrity, but may also reflect a disproportionate influence of nontransmural scar on thickening at DbE. METHODS Sixty patients (age 62 +/- 12 years; 10 women and 50 men) with postinfarction left ventricular dysfunction underwent standard rest-late redistribution Tl-SPECT and DbE. Viable myocardium was identified when dysfunctional segments showed Tl activity >60% on the late-redistribution image or by low-dose augmentation at DbE. Contrast-enhanced magnetic resonance imaging (ceMRI) was used to divide TES into five groups: 0%, 75% of the wall thickness replaced by scar. RESULTS As TES increased, both the mean Tl uptake and change in wall motion score decreased significantly (both p < 0.001). However, the presence of subendocardial scar was insufficient to prevent thickening; >50% of segments still showed contractile function with TES of 25% to 75%, although residual function was uncommon with TES >75%. The relationship of both tests to increasing TES was similar, but Tl-SPECT identified VM more frequently than DbE in all groups. Among segments without scar or with small amounts of scar (50% were viable by SPECT. CONCLUSIONS Both contractile reserve and perfusion are sensitive to the extent of scar. However, contractile reserve may be impaired in the face of no or minor scar, and thickening may still occur with extensive scar. (C) 2004 by the American College of Cardiology Foundation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background-Although assessment of myocardial perfusion by myocardial contrast echocardiography (MCE) is feasible, its incremental benefit to stress echocardiography is not well defined. We examined whether the addition of MCE to combined dipyridamole-exercise echocardiography (DExE) provides incremental benefit for evaluation of coronary artery disease (CAD). Methods and Results-MCE was combined with DExE in 85 patients, 70 of whom were undergoing quantitative coronary angiography and 15 patients with a low probability of CAD. MCE was acquired by low-mechanical-index imaging in 3 apical views after acquisition of standard resting and poststress images. Wall motion, left ventricular opacification, and MCE components of the study were interpreted sequentially, blinded to other data. Significant (>50%) stenoses were present in 43 patients and involved 69 coronary territories. The addition of qualitative MCE improved sensitivity for the detection of CAD (91% versus 74%, P=0.02) and accurate recognition of disease extent (87% versus 65% of territories, P=0.003), with a nonsignificant reduction in specificity. Conclusions-The addition of low-mechanical-index MCE to standard imaging during DExE improves detection of CAD and enables a more accurate determination of disease extent.