955 resultados para Pathway Model
How does a β-hairpin fold/unfold? Competition between topology and heterogeneity in a solvable model
Resumo:
We study the competition between topological effects and sequence inhomogeneities in determining the thermodynamics and the un/folding kinetics of a β-hairpin. Our work utilizes a new exactly solvable model that allows for arbitrary configurations of native contacts. In general, the competition between heterogeneity and topology results in a crossover of the dominant transition state. Interestingly, near this crossover, the single reaction coordinate picture can be seriously misleading. Our results also suggest that inferring the folding pathway from unfolding simulations is not always justified.
Resumo:
Guanylyl cyclase-A (NPR-A; GC-A) is the major and possibly the only receptor for atrial natriuretic peptide (ANP) or B-type natriuretic peptide. Although mice deficient in GC-A display an elevated blood pressure, the resultant cardiac hypertrophy is much greater than in other mouse models of hypertension. Here we overproduce GC-A in the cardiac myocytes of wild-type or GC-A null animals. Introduction of the GC-A transgene did not alter blood pressure or heart rate as a function of genotype. Cardiac myocyte size was larger (approximately 20%) in GC-A null than in wild-type animals. However, introduction of the GC-A transgene reduced cardiac myocyte size in both wild-type and null mice. Coincident with the reduction in myocyte size, both ANP mRNA and ANP content were significantly reduced by overexpression of GC-A, and this reduction was independent of genotype. This genetic model, therefore, separates a regulation of cardiac myocyte size by blood pressure from local regulation by a GC-mediated pathway.
Resumo:
Intracellular protein degradation, which must be tightly controlled to protect normal proteins, is carried out by ATP-dependent proteases. These multicomponent enzymes have chaperone-like ATPases that recognize and unfold protein substrates and deliver them to the proteinase components for digestion. In ClpAP, hexameric rings of the ClpA ATPase stack axially on either face of the ClpP proteinase, which consists of two apposed heptameric rings. We have used cryoelectron microscopy to characterize interactions of ClpAP with the model substrate, bacteriophage P1 protein, RepA. In complexes stabilized by ATPγS, which bind but do not process substrate, RepA dimers are seen at near-axial sites on the distal surface of ClpA. On ATP addition, RepA is translocated through ≈150 Å into the digestion chamber inside ClpP. Little change is observed in ClpAP, implying that translocation proceeds without major reorganization of the ClpA hexamer. When translocation is observed in complexes containing a ClpP mutant whose digestion chamber is already occupied by unprocessed propeptides, a small increase in density is observed within ClpP, and RepA-associated density is also seen at other axial sites. These sites appear to represent intermediate points on the translocation pathway, at which segments of unfolded RepA subunits transiently accumulate en route to the digestion chamber.
Resumo:
The role of the cardiac myocyte as a mediator of paracrine signaling in the heart has remained unclear. To address this issue, we generated mice with cardiac myocyte-specific deletion of the vascular endothelial growth factor gene, thereby producing a cardiomyocyte-specific knockout of a secreted factor. The hearts of these mice had fewer coronary microvessels, thinned ventricular walls, depressed basal contractile function, induction of hypoxia-responsive genes involved in energy metabolism, and an abnormal response to β-adrenergic stimulation. These findings establish the critical importance of cardiac myocyte-derived vascular endothelial growth factor in cardiac morphogenesis and determination of heart function. Further, they establish an adult murine model of hypovascular nonnecrotic cardiac contractile dysfunction.
Resumo:
We review the study of flower color polymorphisms in the morning glory as a model for the analysis of adaptation. The pathway involved in the determination of flower color phenotype is traced from the molecular and genetic levels to the phenotypic level. Many of the genes that determine the enzymatic components of flavonoid biosynthesis are redundant, but, despite this complexity, it is possible to associate discrete floral phenotypes with individual genes. An important finding is that almost all of the mutations that determine phenotypic differences are the result of transposon insertions. Thus, the flower color diversity seized on by early human domesticators of this plant is a consequence of the rich variety of mobile elements that reside in the morning glory genome. We then consider a long history of research aimed at uncovering the ecological fate of these various flower phenotypes in the southeastern U.S. A large body of work has shown that insect pollinators discriminate against white phenotypes when white flowers are rare in populations. Because the plant is self-compatible, pollinator bias causes an increase in self-fertilization in white maternal plants, which should lead to an increase in the frequency of white genes, according to modifier gene theory. Studies of geographical distributions indicate other, as yet undiscovered, disadvantages associated with the white phenotype. The ultimate goal of connecting ecology to molecular genetics through the medium of phenotype is yet to be attained, but this approach may represent a model for analyzing the translation between these two levels of biological organization.
Resumo:
Dendritic cells (DCs) play a central role in regulating immune activation and responses to self. DC maturation is central to the outcome of antigen presentation to T cells. Maturation of DCs is inhibited by physiological levels of 1α,25 dihydroxyvitamin D3 [1α,25(OH)2D3] and a related analog, 1α,25(OH)2-16-ene-23-yne-26,27-hexafluoro-19-nor-vitamin D3 (D3 analog). Conditioning of bone marrow cultures with 10−10 M D3 analog resulted in accumulation of immature DCs with reduced IL-12 secretion and without induction of transforming growth factor β1. These DCs retained an immature phenotype after withdrawal of D3 analog and exhibited blunted responses to maturing stimuli (CD40 ligation, macrophage products, or lipopolysaccharide). Resistance to maturation depended on the presence of the 1α,25(OH)2D3 receptor (VDR). In an in vivo model of DC-mediated antigen-specific sensitization, D3 analog-conditioned DCs failed to sensitize and, instead, promoted prolonged survival of subsequent skin grafts expressing the same antigen. To investigate the physiologic significance of 1α,25(OH)2D3/VDR-mediated modulation of DC maturity we analyzed DC populations from mice lacking VDR. Compared with wild-type animals, VDR-deficient mice had hypertrophy of subcutaneous lymph nodes and an increase in mature DCs in lymph nodes but not spleen. We conclude that 1α,25(OH)2D3/VDR mediates physiologically relevant inhibition of DC maturity that is resistant to maturational stimuli and modulates antigen-specific immune responses in vivo.
Resumo:
The energetics of a fusion pathway is considered, starting from the contact site where two apposed membranes each locally protrude (as “nipples”) toward each other. The equilibrium distance between the tips of the two nipples is determined by a balance of physical forces: repulsion caused by hydration and attraction generated by fusion proteins. The energy to create the initial stalk, caused by bending of cis monolayer leaflets, is much less when the stalk forms between nipples rather than parallel flat membranes. The stalk cannot, however, expand by bending deformations alone, because this would necessitate the creation of a hydrophobic void of prohibitively high energy. But small movements of the lipids out of the plane of their monolayers allow transformation of the stalk into a modified stalk. This intermediate, not previously considered, is a low-energy structure that can reconfigure into a fusion pore via an additional intermediate, the prepore. The lipids of this latter structure are oriented as in a fusion pore, but the bilayer is locally compressed. All membrane rearrangements occur in a discrete local region without creation of an extended hemifusion diaphragm. Importantly, all steps of the proposed pathway are energetically feasible.
Resumo:
Fucoid algae release gametes into seawater following an inductive light period (potentiation), and gamete expulsion from potentiated receptacles of Pelvetia compressa began about 2 min after a light-to-dark transition. Agitation of the medium reversed potentiation, with an exponential time course completed in about 3 h. Light regulated two signaling pathways during potentiation and gamete expulsion: a photosynthetic pathway and a photosynthesis-independent pathway in which red light was active but blue light was not. Uptake of K+ appears to have an important role in potentiation, because a 50% inhibition of potentiation occurred in the presence of the tetraethylammonium ion, a K+-channel blocker. A central role of anion channels in the maintenance of potentiation is suggested by the premature release of gametes in the light when receptacles were incubated with inhibitors of slow-type anion channels. An inhibitor of tyrosine kinases, tyrphostin A63, also inhibited potentiation. A model for gamete release from P. compressa is presented that proposes that illumination results in the accumulation of ions (e.g. K+) throughout the cells of the receptacle during potentiation, which then move into the extracellular matrix during gamete expulsion to generate osmomechanical force, resulting in gamete release.
Resumo:
It is not known whether the mammalian mechanism of coagulation initiation is conserved in fish. Identification of factor VII is critical in providing evidence for such a mechanism. A cDNA was cloned from a zebrafish (teleost) library that predicted a protein with sequence similarity to human factor VII. Factor VII was shown to be present in zebrafish blood and liver by Western blot analysis and immunohistochemistry. Immunodepletion of factor VII from zebrafish plasma selectively inhibited thromboplastin-triggered thrombin generation. Heterologous expression of zebrafish factor VII demonstrated a secreted protein (50 kDa) that reconstituted thromboplastin-triggered thrombin generation in immunodepleted zebrafish plasma. These results suggest conservation of the extrinsic coagulation pathway between zebrafish and humans and add credence to the zebrafish as a model for mammalian hemostasis. The structure of zebrafish factor VIIa predicted by homology modeling was consistent with the overall three-dimensional structure of human factor VIIa. However, amino acid disparities were found in the epidermal growth factor-2/serine protease regions that are present in the human tissue factor–factor VIIa contact surface, suggesting a structural basis for the species specificity of this interaction. In addition, zebrafish factor VII demonstrates that the Gla-EGF-EGF-SP domain structure, which is common to coagulation factors VII, IX, X, and protein C, was present before the radiation of the teleosts from the tetrapods. Identification of zebrafish factor VII significantly narrows the evolutionary window for development of the vertebrate coagulation cascade and provides insight into the structural basis for species specificity in the tissue factor–factor VIIa interaction.
Resumo:
Recently individual two-headed kinesin molecules have been studied in in vitro motility assays revealing a number of their peculiar transport properties. In this paper we propose a simple and robust model for the kinesin stepping process with elastically coupled Brownian heads that show all of these properties. The analytic and numerical treatment of our model results in a very good fit to the experimental data and practically has no free parameters. Changing the values of the parameters in the restricted range allowed by the related experimental estimates has almost no effect on the shape of the curves and results mainly in a variation of the zero load velocity that can be directly fitted to the measured data. In addition, the model is consistent with the measured pathway of the kinesin ATPase.
Resumo:
The presentation of antigenic peptides by major histocompatibility complex (MHC) class II molecules to CD4+ T cells is critical to the function of the immune system. In this study, we have utilized the sorting signal of the lysosomal-associated membrane protein LAMP-1 to target a model antigen, human papillomavirus 16 E7 (HPV-16 E7), into the endosomal and lysosomal compartments. The LAMP-1 sorting signal reroutes the antigen into the MHC class II processing pathway, resulting in enhanced presentation to CD4+ cells in vitro. In vivo immunization experiments in mice demonstrated that vaccinia containing the chimeric E7/LAMP-1 gene generated greater E7-specific lymphoproliferative activity, antibody titers, and cytotoxic T-lymphocyte activities than vaccinia containing the wild-type HPV-16 E7 gene. These results suggest that specific targeting of an antigen to the endosomal and lysosomal compartments enhances MHC class II presentation and vaccine potency.
Resumo:
Type I hereditary tyrosinaemia (HT1) is a severe human inborn disease resulting from loss of fumaryl-acetoacetate hydrolase (Fah). Homozygous disruption of the gene encoding Fah in mice causes neonatal lethality, seriously limiting use of this animal as a model. We report here that fahA, the gene encoding Fah in the fungus Aspergillus nidulans, encodes a polypeptide showing 47.1% identity to its human homologue, fahA disruption results in secretion of succinylacetone (a diagnostic compound for human type I tyrosinaemia) and phenylalanine toxicity. We have isolated spontaneous suppressor mutations preventing this toxicity, presumably representing loss-of-function mutations in genes acting upstream of fahA in the phenylalanine catabolic pathway. Analysis of a class of these mutations demonstrates that loss of homogentisate dioxygenase (leading to alkaptonuria in humans) prevents the effects of a Fah deficiency. Our results strongly suggest human homogentisate dioxygenase as a target for HT1 therapy and illustrate the usefulness of this fungus as an alternative to animal models for certain aspects of human metabolic diseases.
Resumo:
Several studies have established a link between blood coagulation and cancer, and more specifically between tissue factor (TF), a transmembrane protein involved in initiating blood coagulation, and tumor metastasis. In the study reported here, a murine model of human melanoma metastasis was used for two experiments. (i) The first experiment was designed to test the effect of varying the level of TF expression in human melanoma cells on their metastatic potential. Two matched sets of cloned human melanoma lines, one expressing a high level and the other a low level of the normal human TF molecule, were generated by retroviral-mediated transfections of a nonmetastatic parental line. The metastatic potential of the two sets of transfected lines was compared by injecting the tumor cells into the tail vein of severe combined immunodeficiency (SCID) mice and later examining the lungs and other tissues for tumor development. Metastatic tumors were detected in 86% of the mice injected with the high-TF lines and in 5% of the mice injected with the low-TF lines, indicating that a high TF level promotes metastasis of human melanoma in the SCID mouse model. This TF effect on metastasis occurs with i.v.-injected melanoma cells but does not occur with primary tumors formed from s.c.-injected melanoma cells, suggesting that TF acts at a late stage of metastasis, after tumor cells have escaped from the primary site and entered the blood. (ii) The second experiment was designed to analyze the mechanism by which TF promotes melanoma metastasis. The procedure involved testing the effect on metastasis of mutations in either the extracellular or cytoplasmic domains of the transmembrane TF molecule. The extracellular mutations introduced two amino acid substitutions that inhibited initiation by TF of the blood-coagulation cascade; the cytoplasmic mutation deleted most of the cytoplasmic domain without impairing the coagulation function of TF. Several human melanoma lines expressing high levels of either of the two mutant TF molecules were generated by retroviral-mediated transfection of the corresponding TF cDNA into the nonmetastatic parental melanoma line, and the metastatic potential of each transfected line was tested in the SCID mouse model. Metastases occurred in most mice injected with the melanoma lines expressing the extracellular TF mutant but were not detected in most mice injected with the melanoma lines expressing the cytoplasmic TF mutant. Results with the extracellular TF mutant indicate that the metastatic effect of TF in the SCID mouse model does not involve products of the coagulation cascade. Results with the cytoplasmic TF mutant indicate that the cytoplasmic domain of TF is important for the metastatic effect, suggesting that the TF could transduce a melanoma cell signal that promotes metastasis.
Resumo:
Paradoxically, nitric oxide (NO) has been found to exhibit cytotoxic, antiproliferative, or cytoprotective activity under different conditions. We have utilized Salmonella mutants deficient in antioxidant defenses or peptide transport to gain insights into NO actions. Comparison of three NO donor compounds reveals distinct and independent cellular responses associated with specific redox forms of NO. The peroxynitrite (OONO-) generator 3-morpholinosydnonimine hydrochloride mediates oxygen-dependent Salmonella killing, whereas S-nitrosoglutathione (GSNO) causes oxygen-independent cytostasis, and the NO. donor diethylenetriamine-nitric oxide adduct has no antibacterial activity. GSNO has the greatest activity for stationary cells, a characteristic relevant to latent or intracellular pathogens. Moreover, the cytostatic activity of GSNO may best correlate with antiproliferative or antimicrobial effects of NO, which are unassociated with overt cell injury. dpp mutants defective in active dipeptide transport are resistant to GSNO, implicating heterolytic NO+ transfer rather than homolytic NO. release in the mechanism of cytostasis. This transport system may provide a specific pathway for GSNO-mediated signaling in biological systems. The redox state and associated carrier molecules are critical determinants of NO activity.
Resumo:
We have analyzed the pathway of folding of barnase bound to GroEL to resolve the controversy of whether proteins can fold while bound to chaperonins (GroEL or Cpn60) or fold only after their release into solution. Four phases in the folding were detected by rapid-reaction kinetic measurements of the intrinsic fluorescence of both wild type and barnase mutants. The phases were assigned from their rate laws, sensitivity to mutations, and correspondence to regain of catalytic activity. At high ratios of denatured barnase to GroEL, 4 mol of barnase rapidly bind per 14-mer of GroEL. At high ratios of GroEL to barnase, 1 mol of barnase binds with a rate constant of 3.5 x 10(7) s-1.M-1. This molecule then refolds with a low rate constant that changes on mutation in parallel with the rate constant for the folding in solution. This rate constant corresponds to the regain of the overall catalytic activity of barnase and increases 15-fold on the addition of ATP to a physiologically relevant value of approximately 0.4 s-1. The multiply bound molecules of barnase that are present at high ratios of GroEL to barnase fold with a rate constant that is also sensitive to mutation but is 10 times higher. If the 110-residue barnase can fold when bound to GroEL and many moles can bind simultaneously, then smaller parts of large proteins should be able to fold while bound.