964 resultados para Pareto-optimal solutions


Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are two types of work typically performed in services which differ in the degree of control management has over when the work must be done. Serving customers, an activity that can occur only when customers are in the system is, by its nature, uncontrollable work. In contrast, the execution of controllable work does not require the presence of customers, and is work over which management has some degree of temporal control. This paper presents two integer programming models for optimally scheduling controllable work simultaneously with shifts. One model explicitly defines variables for the times at which controllable work may be started, while the other uses implicit modeling to reduce the number of variables. In an initial experiment of 864 test problems, the latter model yielded optimal solutions in approximately 81 percent of the time required by the former model. To evaluate the impact on customer service of having front-line employees perform controllable work, a second experiment was conducted simulating 5,832 service delivery systems. The results show that controllable work offers a useful means of improving labor utilization. Perhaps more important, it was found that having front-line employees perform controllable work did not degrade the desired level of customer service.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work explores regulation of forward speed, step length, and slope walking for the passive-dynamic class of bipedal robots. Previously, an energy-shaping control for regulating forward speed has appeared in the literature; here we show that control to be a special case of a more general time-scaling control that allows for speed transitions in arbitrary time. As prior work has focused on potential energy shaping for fully actuated bipeds, we study in detail the shaping of kinetic energy for bipedal robots, giving special treatment to issues of underactuation. Drawing inspiration from features of human walking, an underactuated kinetic-shaping control is presented that provides efficient regulation of walking speed while adjusting step length. Previous results on energetic symmetries of bipedal walking are also extended, resulting in a control that allows regulation of speed and step length while walking on any slope. Finally we formalize the optimal gait regulation problem and propose a dynamic programming solution seeded with passive-dynamic limit cycles. Observations of the optimal solutions generated by this method reveal further similarities between passive dynamic walking and human locomotion and give insight into the structure of minimum-effort controls for walking.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

International audience

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Part 18: Optimization in Collaborative Networks

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the standard Vehicle Routing Problem (VRP), we route a fleet of vehicles to deliver the demands of all customers such that the total distance traveled by the fleet is minimized. In this dissertation, we study variants of the VRP that minimize the completion time, i.e., we minimize the distance of the longest route. We call it the min-max objective function. In applications such as disaster relief efforts and military operations, the objective is often to finish the delivery or the task as soon as possible, not to plan routes with the minimum total distance. Even in commercial package delivery nowadays, companies are investing in new technologies to speed up delivery instead of focusing merely on the min-sum objective. In this dissertation, we compare the min-max and the standard (min-sum) objective functions in a worst-case analysis to show that the optimal solution with respect to one objective function can be very poor with respect to the other. The results motivate the design of algorithms specifically for the min-max objective. We study variants of min-max VRPs including one problem from the literature (the min-max Multi-Depot VRP) and two new problems (the min-max Split Delivery Multi-Depot VRP with Minimum Service Requirement and the min-max Close-Enough VRP). We develop heuristics to solve these three problems. We compare the results produced by our heuristics to the best-known solutions in the literature and find that our algorithms are effective. In the case where benchmark instances are not available, we generate instances whose near-optimal solutions can be estimated based on geometry. We formulate the Vehicle Routing Problem with Drones and carry out a theoretical analysis to show the maximum benefit from using drones in addition to trucks to reduce delivery time. The speed-up ratio depends on the number of drones loaded onto one truck and the speed of the drone relative to the speed of the truck.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main goal of this paper is to analyse the sensitivity of a vector convex optimization problem according to variations in the right-hand side. We measure the quantitative behavior of a certain set of Pareto optimal points characterized to become minimum when the objective function is composed with a positive function. Its behavior is analysed quantitatively using the circatangent derivative for set-valued maps. Particularly, it is shown that the sensitivity is closely related to a Lagrange multiplier solution of a dual program.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes and investigates a metaheuristic tabu search algorithm (TSA) that generates optimal or near optimal solutions sequences for the feedback length minimization problem (FLMP) associated to a design structure matrix (DSM). The FLMP is a non-linear combinatorial optimization problem, belonging to the NP-hard class, and therefore finding an exact optimal solution is very hard and time consuming, especially on medium and large problem instances. First, we introduce the subject and provide a review of the related literature and problem definitions. Using the tabu search method (TSM) paradigm, this paper presents a new tabu search algorithm that generates optimal or sub-optimal solutions for the feedback length minimization problem, using two different neighborhoods based on swaps of two activities and shifting an activity to a different position. Furthermore, this paper includes numerical results for analyzing the performance of the proposed TSA and for fixing the proper values of its parameters. Then we compare our results on benchmarked problems with those already published in the literature. We conclude that the proposed tabu search algorithm is very promising because it outperforms the existing methods, and because no other tabu search method for the FLMP is reported in the literature. The proposed tabu search algorithm applied to the process layer of the multidimensional design structure matrices proves to be a key optimization method for an optimal product development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this study is to identify the optimal designs of converging-diverging supersonic and hypersonic nozzles that perform at maximum uniformity of thermodynamic and flow-field properties with respect to their average values at the nozzle exit. Since this is a multi-objective design optimization problem, the design variables used are parameters defining the shape of the nozzle. This work presents how variation of such parameters can influence the nozzle exit flow non-uniformities. A Computational Fluid Dynamics (CFD) software package, ANSYS FLUENT, was used to simulate the compressible, viscous gas flow-field in forty nozzle shapes, including the heat transfer analysis. The results of two turbulence models, k-e and k-ω, were computed and compared. With the analysis results obtained, the Response Surface Methodology (RSM) was applied for the purpose of performing a multi-objective optimization. The optimization was performed with ModeFrontier software package using Kriging and Radial Basis Functions (RBF) response surfaces. Final Pareto optimal nozzle shapes were then analyzed with ANSYS FLUENT to confirm the accuracy of the optimization process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Frequency, time and places of charging and discharging have critical impact on the Quality of Experience (QoE) of using Electric Vehicles (EVs). EV charging and discharging scheduling schemes should consider both the QoE of using EV and the load capacity of the power grid. In this paper, we design a traveling plan-aware scheduling scheme for EV charging in driving pattern and a cooperative EV charging and discharging scheme in parking pattern to improve the QoE of using EV and enhance the reliability of the power grid. For traveling planaware scheduling, the assignment of EVs to Charging Stations (CSs) is modeled as a many-to-one matching game and the Stable Matching Algorithm (SMA) is proposed. For cooperative EV charging and discharging in parking pattern, the electricity exchange between charging EVs and discharging EVs in the same parking lot is formulated as a many-to-many matching model with ties, and we develop the Pareto Optimal Matching Algorithm (POMA). Simulation results indicates that the SMA can significantly improve the average system utility for EV charging in driving pattern, and the POMA can increase the amount of electricity offloaded from the grid which is helpful to enhance the reliability of the power grid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes and investigates a metaheuristic tabu search algorithm (TSA) that generates optimal or near optimal solutions sequences for the feedback length minimization problem (FLMP) associated to a design structure matrix (DSM). The FLMP is a non-linear combinatorial optimization problem, belonging to the NP-hard class, and therefore finding an exact optimal solution is very hard and time consuming, especially on medium and large problem instances. First, we introduce the subject and provide a review of the related literature and problem definitions. Using the tabu search method (TSM) paradigm, this paper presents a new tabu search algorithm that generates optimal or sub-optimal solutions for the feedback length minimization problem, using two different neighborhoods based on swaps of two activities and shifting an activity to a different position. Furthermore, this paper includes numerical results for analyzing the performance of the proposed TSA and for fixing the proper values of its parameters. Then we compare our results on benchmarked problems with those already published in the literature. We conclude that the proposed tabu search algorithm is very promising because it outperforms the existing methods, and because no other tabu search method for the FLMP is reported in the literature. The proposed tabu search algorithm applied to the process layer of the multidimensional design structure matrices proves to be a key optimization method for an optimal product development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is still much discussion on the most appropriate location, size and shape of marine protected areas (MPAs). These three factors were analyzed for a small coastal MPA, the Luiz Saldanha Marine Park (LSMP), for which a very limited amount of local ecological information was available when implemented in 1998. Marxan was used to provide a number of near-optimal solutions considering different levels of protection for the various conservation features and different costs. These solutions were compared with the existing no-take area of the LSMP. Information on 11 habitat types and distribution models for 3 of the most important species for the local artisanal fisheries was considered. The human activities with the highest economic and ecological impact in the study area (commercial and recreational fishing and scuba diving) were used as costs. The results show that the existing no-take area is actually located in the best area. However, the no-take area offers limited protection to vagile fish and covers a very small proportion of some of the available habitats. An increase in the conservation targets led to an increase in the number of no-take areas. The comparative framework used in this study can be applied elsewhere, providing relevant information to local stakeholders and managers in order to proceed with adaptive management. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A High-Performance Computing job dispatcher is a critical software that assigns the finite computing resources to submitted jobs. This resource assignment over time is known as the on-line job dispatching problem in HPC systems. The fact the problem is on-line means that solutions must be computed in real-time, and their required time cannot exceed some threshold to do not affect the normal system functioning. In addition, a job dispatcher must deal with a lot of uncertainty: submission times, the number of requested resources, and duration of jobs. Heuristic-based techniques have been broadly used in HPC systems, at the cost of achieving (sub-)optimal solutions in a short time. However, the scheduling and resource allocation components are separated, thus generates a decoupled decision that may cause a performance loss. Optimization-based techniques are less used for this problem, although they can significantly improve the performance of HPC systems at the expense of higher computation time. Nowadays, HPC systems are being used for modern applications, such as big data analytics and predictive model building, that employ, in general, many short jobs. However, this information is unknown at dispatching time, and job dispatchers need to process large numbers of them quickly while ensuring high Quality-of-Service (QoS) levels. Constraint Programming (CP) has been shown to be an effective approach to tackle job dispatching problems. However, state-of-the-art CP-based job dispatchers are unable to satisfy the challenges of on-line dispatching, such as generate dispatching decisions in a brief period and integrate current and past information of the housing system. Given the previous reasons, we propose CP-based dispatchers that are more suitable for HPC systems running modern applications, generating on-line dispatching decisions in a proper time and are able to make effective use of job duration predictions to improve QoS levels, especially for workloads dominated by short jobs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The world of Computational Biology and Bioinformatics presently integrates many different expertise, including computer science and electronic engineering. A major aim in Data Science is the development and tuning of specific computational approaches to interpret the complexity of Biology. Molecular biologists and medical doctors heavily rely on an interdisciplinary expert capable of understanding the biological background to apply algorithms for finding optimal solutions to their problems. With this problem-solving orientation, I was involved in two basic research fields: Cancer Genomics and Enzyme Proteomics. For this reason, what I developed and implemented can be considered a general effort to help data analysis both in Cancer Genomics and in Enzyme Proteomics, focusing on enzymes which catalyse all the biochemical reactions in cells. Specifically, as to Cancer Genomics I contributed to the characterization of intratumoral immune microenvironment in gastrointestinal stromal tumours (GISTs) correlating immune cell population levels with tumour subtypes. I was involved in the setup of strategies for the evaluation and standardization of different approaches for fusion transcript detection in sarcomas that can be applied in routine diagnostic. This was part of a coordinated effort of the Sarcoma working group of "Alleanza Contro il Cancro". As to Enzyme Proteomics, I generated a derived database collecting all the human proteins and enzymes which are known to be associated to genetic disease. I curated the data search in freely available databases such as PDB, UniProt, Humsavar, Clinvar and I was responsible of searching, updating, and handling the information content, and computing statistics. I also developed a web server, BENZ, which allows researchers to annotate an enzyme sequence with the corresponding Enzyme Commission number, the important feature fully describing the catalysed reaction. More to this, I greatly contributed to the characterization of the enzyme-genetic disease association, for a better classification of the metabolic genetic diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show a standard model where the optimal tax reform is to cut labor taxes and leave capital taxes very high in the short and medium run. Only in the very long run would capital taxes be zero. Our model is a version of Chamley??s, with heterogeneous agents, without lump sum transfers, an upper bound on capital taxes, and a focus on Pareto improving plans. For our calibration labor taxes should be low for the first ten to twenty years, while capital taxes should be at their maximum. This policy ensures that all agents benefit from the tax reform and that capital grows quickly after when the reform begins. Therefore, the long run optimal tax mix is the opposite from the short and medium run tax mix. The initial labor tax cut is financed by deficits that lead to a positive long run level of government debt, reversing the standard prediction that government accumulates savings in models with optimal capital taxes. If labor supply is somewhat elastic benefits from tax reform are high and they can be shifted entirely to capitalists or workers by varying the length of the transition. With inelastic labor supply there is an increasing part of the equilibrium frontier, this means that the scope for benefitting the workers is limited and the total benefits from reforming taxes are much lower.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the analysis of equilibrium policies in a di erential game, if agents have different time preference rates, the cooperative (Pareto optimum) solution obtained by applying the Pontryagin's Maximum Principle becomes time inconsistent. In this work we derive a set of dynamic programming equations (in discrete and continuous time) whose solutions are time consistent equilibrium rules for N-player cooperative di erential games in which agents di er in their instantaneous utility functions and also in their discount rates of time preference. The results are applied to the study of a cake-eating problem describing the management of a common property exhaustible natural resource. The extension of the results to a simple common property renewable natural resource model in in nite horizon is also discussed.