878 resultados para Parallel processing (Electronic computers)
Resumo:
Acknowledgment This research is supported by an award made by the RCUK Digital Economy program to the University of Aberdeen’s dot.rural Digital Economy Hub (ref. EP/G066051/1).
Resumo:
Postprint
Resumo:
This research is supported by the UK Research Councils’ Digital Economy IT as a Utility Network+ (EP/K003569/1) and the dot.rural Digital Economy Hub (EP/G066051/1).
Resumo:
This research is supported by the UK Research Councils’ Digital Economy IT as a Utility Network+ (EP/K003569/1) and the dot.rural Digital Economy Hub (EP/G066051/1).
Resumo:
Date of Acceptance: 09/07/2015
Resumo:
The research described here is supported by the award made by the RCUK Digital Economy program to the dot.rural Digital Economy Hub; award reference: EP/G066051/1.
Resumo:
Postprint
Resumo:
Postprint
Resumo:
Postprint
Resumo:
Postprint
Resumo:
Postprint
Resumo:
Peer reviewed
Resumo:
Economics of Cybersecurity Part 2. SPSI-2015-01-0024.
Resumo:
In the mammalian retina, extensive processing of spatiotemporal and chromatic information occurs. One key principle in signal transfer through the retina is parallel processing. Two of these parallel pathways are the ON- and OFF-channels transmitting light and dark signals. This dual system is created in the outer plexiform layer, the first relay station in retinal signal transfer. Photoreceptors release glutamate onto ON- and OFF-type bipolar cells, which are functionally distinguished by their postsynaptic expression of different types of glutamate receptors, namely ionotropic and metabotropic glutamate receptors. In the current concept, rod photoreceptors connect only to rod bipolar cells (ON-type) and cone photoreceptors connect only to cone bipolar cells (ON- and OFF-type). We have studied the distribution of (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunits at the synapses in the outer plexiform layer of the rodent retina by immunoelectron microscopy and serial section reconstruction. We report a non-classical synaptic contact and an alternative pathway for rod signals in the retina. Rod photoreceptors made synaptic contact with putative OFF-cone bipolar cells that expressed the AMPA glutamate receptor subunits GluR1 and GluR2 on their dendrites. Thus, in the retina of mouse and rat, an alternative pathway for rod signals exists, where rod photoreceptors bypass the rod bipolar cell and directly excite OFF-cone bipolar cells through an ionotropic sign-conserving AMPA glutamate receptor.