941 resultados para Pancreatic tumor
Resumo:
Despite positive testing in animal studies, more than 80% of novel drug candidates fail to proof their efficacy when tested in humans. This is primarily due to the use of preclinical models that are not able to recapitulate the physiological or pathological processes in humans. Hence, one of the key challenges in the field of translational medicine is to “make the model organism mouse more human.” To get answers to questions that would be prognostic of outcomes in human medicine, the mouse's genome can be altered in order to create a more permissive host that allows the engraftment of human cell systems. It has been shown in the past that these strategies can improve our understanding of tumor immunology. However, the translational benefits of these platforms have still to be proven. In the 21st century, several research groups and consortia around the world take up the challenge to improve our understanding of how to humanize the animal's genetic code, its cells and, based on tissue engineering principles, its extracellular microenvironment, its tissues, or entire organs with the ultimate goal to foster the translation of new therapeutic strategies from bench to bedside. This article provides an overview of the state of the art of humanized models of tumor immunology and highlights future developments in the field such as the application of tissue engineering and regenerative medicine strategies to further enhance humanized murine model systems.
Resumo:
Background. Pancreatic cancer is one of the major causes of cancer death in the industrialised world. The overall survival of patients with ductal pancreatic adenocarcinoma is poor: 5-year survival is only 0.2 to 4%. Tumour stage and histological grade are used as prognostic markers in pancreatic cancer. However, there are differences in survival within stages and histological grades. New, additional and more accurate prognostic tools are needed. Aims. The purpose of this study was to investigate whether the tissue expression of potential and promising tumour markers p27, tenascin C, syndecan-1, COX-2 and MMP-2 are associated with clinicopathological parameters in pancreatic cancer. The expression of p27, tenascin C and syndecan-1 was also evaluated in acute and chronic pancreatitis. The main purpose in the study was to find new prognostic markers for pancreatic adenocarcinoma. Patients. The study included 147 patients with histologically verified pancreatic adenocarcinoma treated at Helsinki University Central Hospital from 1974 to1998. Methods. The expression of tumour marker antigens was demonstrated by immunohistochemistry using monoclonal antibodies against p27, syndecan-1, tenascin C, COX-2 and MMP-2. The results were compared with clinicopathological variables, i.e. age, sex, TNM stage and histological grade. Survival analyses were performed with univariate Kaplan-Meier life-tables and the log-rank test, while multivariate analyses were performed using Cox regression. Results. Pancreatic adenocarcinomas expressed p27, syndecan-1, tenascin C, COX-2 and MMP-2 in 30, 94, 92, 36 and 50% of the samples, respectively. Loss of p27 expression was associated with poor prognosis in stage I and II pancreatic cancer. Stromal syndecan-1 expression was an independent prognostic marker in pancreatic cancer, whereas epithelial syndecan-1 expression predicted better prognosis only in stage I and II disease. Tenascin C expression did not correlate with survival but was associated with differentiation. COX-2 expression was associated with poor outcome and was an independent prognostic factor. Epithelial MMP-2 correlated with poor prognosis in pancreatic cancer. Conclusion: p27 and epithelial syndecan-1 are prognostic markers in early (stage I and II) pancreatic cancer. Stromal syndecan-1, COX-2 and epithelial MMP-2 are prognostic factors in ductal pancreatic adenocarcinoma.
Resumo:
Phospholipase A(2) hydrolyzes phospholipids at the sn-2 position to cleave the fatty-acid ester bond of L-glycerophospholipids. The catalytic dyad (Asp99 and His48) along with a nucleophilic water molecule is responsible for enzyme hydrolysis. Furthermore, the residue Asp49 in the calcium-binding loop is essential for controlling the binding of the calcium ion and the catalytic action of phospholipase A2. To elucidate the structural role of His48 and Asp49, the crystal structures of three active-site single mutants H48N, D49N and D49K have been determined at 1.9 angstrom resolution. Although the catalytically important calcium ion is present in the H48N mutant, the crystal structure shows that proton transfer is not possible from the catalytic water to the mutated residue. In the case of the Asp49 mutants, no calcium ion was found in the active site. However, the tertiary structures of the three active-site mutants are similar to that of the trigonal recombinant enzyme. Molecular-dynamics simulation studies provide a good explanation for the crystallographic results.
Resumo:
Suurin ongelma syöpätautien lääkehoidossa on sen aiheuttamat toksiset sivuvaikutukset. Tyypillisesti vain noin 1 % elimistöön annostellusta lääkeaineesta saavuttaa hoitoa tarvitsevat syöpäsolut, loppuosa lääkeaineesta jää vahingoittamaan elimistön terveitä soluja. Toksiset sivuvaikutukset rajoittavat lääkehoidon annoksen nostamista elimistössä riittävälle pitoisuudelle, mikä johtaa usein sairauden ennenaikaiseen pahenemiseen ja mahdollisen lääkeaineresistenssin kehittymiseen. Liposomien välittämä lääkeaineen kohdentaminen voidaan jakaa kahteen eri menetelmään: passiiviseen ja aktiiviseen kohdentamiseen. Liposomien passiivisen kohdentamisen tarkoituksena on lisätä sytotoksisen lääkeaineen paikallistumista pelkästään kasvainkudokseen. Passiivinen kohdentaminen perustuu liposomien kulkeutumiseen verenkierron mukana, jolloin liposomit kerääntyvät epänormaalisti muodostuneeseen kasvainkudokseen. Liposomien aktiivisella kohdentamisella pyritään parantamaan passiivisesti kohdentuvien liposomien terapeuttista tehokkuutta kohdentamalla lääkeaineen vaikutus pelkästään syöpäsoluihin. Aktiivisessa kohdennuksessa liposomin pintaan kiinnitetään ligandi, joka spesifisesti tunnistaa kohdesolun. Tämän pro gradu -tutkielman kirjallisen osion tarkoituksena oli tutustua syöpäkudokseen kohdennettujen liposomien ominaisuuksiin tehokkaan soluunoton ja sytotoksisuuden saavuttamiseksi. Kokeellisessa osiossa tutkittiin kohdennettujen liposomien soluunottoa ja sytotoksista vaikutusta ihmisen munasarjasta eristetyillä adenokarsinoomasoluilla (SKOV-3). Liposomit kohdennettiin setuksimabi (C225, Erbitux®) vasta-aineella, jonka on todettu olevan tietyissä syöpätyypeissä (mm. keuhko- ja kolorektaalisyövissä, pään ja kaulan syövissä sekä rinta-, munuais-, eturauhas-, haima- ja munasarjasyövissä) yli-ilmentyneen epidermaalisen kasvutekijäreseptoriperheen HER1-proteiinin (ErbB-1, EGFR, epidermal growth factor receptor) spesifinen ja selektiivinen inhibiittori. Afrikan viherapinan munuaisista lähtöisin olevaa CV-1 solulinjaa käytettiin kontrollina kuvaamaan elimistön normaaleja soluja. Kohdennettujen liposomien soluunottoa tutkittiin soluunottokokeilla, joissa käytettiin kontrollina kohdentamattomia pegyloituja liposomeja. Setuksimabi-vasta-aineen spesifinen sitoutuminen EGF-reseptoriin todettiin kilpailutuskokeilla. Doksorubisiinia sisältävien immunoliposomien sytotoksisuutta selvitettiin Alamar Blue™ -elävyystestillä. Lisäksi immunoliposomien säilyvyyttä seurattiin mittaamalla liposomien keskimääräinen halkaisija noin kahden viikon välein. Setuksimabi-vasta-aineella kohdennettujen liposomien soluunotto oli huomattavasti suurentunut SKOV-3 syöpäsoluissa ja doksorubisiinia sisältävät kohdennetut liposomit aiheuttivat voimakkaamman sytotoksisen vaikutuksen kuin kohdentamattomat liposomit. Kohdennettujen doksorubisiiniliposomien sytotoksisuus tuli kuitenkin esille viiveellä, mikä viittaa lääkeaineen hitaaseen vapautumiseen liposomista. Suurentunutta soluunottoa ja sytotoksista vaikutusta ei havaittu CV-1 solulinjassa. Kohdennettujen liposomien sovellusmahdollisuudet lääketieteessä ja syövän hoidossa ovat merkittävät. Tällä hetkellä liposomien kliininen käyttö rajoittuu passiivisesti kohdennettuihin liposomeihin (Doxil® (Am.),Caelyx® (Eur.)). Lupaavista solukokeista huolimatta kohdennettujen liposomien terapeuttinen käyttö tulevaisuudessa näyttää haasteelliselta.
Resumo:
VITAMIN A and cholesterol esters have been shown to undergo extensive hydrolysis in the lumen of the small intestine during the process of absorption; they are re-esterified to appear in the lymph mostly as esters1,2. However, the vitamin A esters of the lymph, blood and liver of the rat are formed by long-chain fatty acids3 and in the normal rat liver, probably as palmitates4. On the other hand, cholesterol esters are usually made up of poly-unsaturated fatty acids in the lymph and blood of rats5. For the absorption of the two lipid materials, the enzymes of the pancreas have been largely implicated, while not much attention has been paid to the possible role of the mucosal enzymes. From the behaviour of the mucosal enzymes, as presented here, it appears that probably these enzymes play a more important part in the re-esterification of the two lipid materials during their absorption.
Resumo:
Tumorigenesis is a consequence of inactivating mutations of tumor suppressor genes and activating mutations of proto-oncogenes. Most of the mutations compromise cell autonomous and non-autonomous restrains on cell proliferation by modulating kinase signal transduction pathways. LKB1 is a tumor suppressor kinase whose sporadic mutations are frequently found in non-small cell lung cancer and cervical cancer. Germ-line mutations in the LKB1 gene lead to Peutz-Jeghers syndrome with an increased risk of cancer and development of benign gastrointestinal hamartomatous polyps consisting of hyperproliferative epithelia and prominent stromal stalk composed of smooth muscle cell lineage cells. The tumor suppressive function of LKB1 is possibly mediated by 14 identified LKB1 substrate kinases, whose activation is dependent on the LKB1 kinase complex. The aim of my thesis was to identify cell signaling pathways crucial for tumor suppression by LKB1. Re-introduction of LKB1 expression in the melanoma cell line G361 induces cell cycle arrest. Here we demonstrated that restoring the cytoplasmic LKB1 was sufficient to induce the cell cycle arrest in a tumor suppressor p53 dependent manner. To address the role of LKB1 in gastrointestinal tumor suppression, Lkb1 was deleted specifically in SMC lineage in vivo, which was sufficient to cause Peutz-Jeghers syndrome type polyposis. Studies on primary myofibroblasts lacking Lkb1 suggest that the regulation of TGFβ signaling, actin stress fibers and smooth muscle cell lineage differentiation are candidate mechanisms for tumor suppression by LKB1 in the gastrointestinal stroma. Further studies with LKB1 substrate kinase NUAK2 in HeLa cells indicate that NUAK2 is part of a positive feedback loop by which NUAK2 expression promotes actin stress fiber formation and, reciprocally the induction of actin stress fibers promote NUAK2 expression. Findings in this thesis suggest that p53 and TGFβ signaling pathways are potential mediators of tumor suppression by LKB1. An indication of NUAK2 in the promotion of actin stress fibers suggests that NUAK2 is one possible mediator of LKB1 dependent TGFβ signaling and smooth muscle cell lineage differentiation.
Resumo:
Individuals with inherited deficiency in DNA mismatch repair(MMR) (Lynch syndrome) LS are predisposed to different cancers in a non-random fashion. Endometrial cancer (EC) is the most common extracolonic malignancy in LS. LS represents the best characterized form of hereditary nonpolyposis colorectal carcinoma (HNPCC). Other forms of familial non-polyposis colon cancer exist, including familial colorectal cancer type X (FCCX). This syndrome resembles LS, but MMR gene defects are excluded and the predisposition genes are unknown so far. To address why different organs are differently susceptible to cancer development, we examined molecular similarities and differences in selected cancers whose frequency varies in LS individuals. Tumors that are common (colorectal, endometrial, gastric) and less common (brain, urological) in LS were characterized for MMR protein expression, microsatellite instability (MSI), and by altered DNA methylation. We also studied samples of histologically normal endometrium, endometrial hyperplasia,and cancer for molecular alterations to identify potential markers that could predict malignant transformation in LS and sporadic cases. Our results suggest that brain and kidney tumors follow a different pathway for cancer development than the most common LS related cancers.Our results suggest also that MMR defects are detectable in endometrial tissues from a proportion of LS mutation carriers prior to endometrial cancer development. Traditionally (complex) atypical hyperplasia has been considered critical for progression to malignancy. Our results suggest that complex hyperplasia without atypia is equally important as a precursor lesion of malignancy. Tumor profiles from Egypt were compared with colorectal tumors from Finland to evaluate if there are differences specific to the ethnic origin (East vs.West). Results showed for the first time a distinct genetic and epigenetic signature in the Egyptian CRC marked by high methylation of microsatellite stable tumors associated with advanced stage, and low frequency of Wnt signaling activation, suggesting a novel pathway. DNA samples from FCCX families were studied with genome wide linkage analysis using microsatellite markers. Selected genes from the linked areas were tested for possible mutations that could explain predisposition to a large number of colon adenomas and carcinomas seen in these families. Based on the results from the linkage analysis, a number of areas with tentative linkage were identified in family 20. We narrowed down these areas by additional microsatellite markers to found a mutation in the BMPR1A gene. Sequencing of an additional 17 FCCX families resulted in a BMPR1A mutation frequency of 2/18 families (11%). Clarification of the mechanisms of the differential tumor susceptibility in LS increases the understanding of gene and organ specific targets of MMR deficiency. While it is generally accepted that widespread MMR deficiency and consequent microsatellite instability (MSI) drives tumorigenesis in LS, the timing of molecular alterations is controversial. In particular, it is important to know that alterations may occur several years before cancer formation, at stages that are still histologically regarded as normal. Identification of molecular markers that could predict the risk of malignant transformation may be used to improve surveillance and cancer prevention in genetically predisposed individuals. Significant fractions of families with colorectal and/or endometrial cancer presently lack molecular definition altogether. Our findings expand the phenotypic spectrum of BMPR1A mutations and, for the first time, link FCCX families to the germline mutation of a specific gene. In particular, our observations encourage screening of additional families with FCCX for BMPR1A mutation, which is necessary in obtaining a reliable estimate of the share of BMPR1A-associated cases among all FCCX families worldwide. Clinically, the identification of predisposing mutations enables targeted cancer prevention in proven mutation carriers and thereby reduces cancer morbidity and mortality in the respective families.
Resumo:
The p53-family consists of three transcription factors, p53, p73 and p63. The family members have similar but also individual functions connected to cell cycle regulation, development and tumorigenesis. p53 and p73 act mainly as tumor suppressors. During DNA damage caused by anticancer drugs or irradiation, p53 and p73 levels are upregulated in cancer cells leading to apoptosis and cell cycle arrest. p53 is mutated in almost 50 per cent of the cancers, causing the cancer cells unable to undergo cell death. Instead, p73 is rarely mutated in cancer cells and because of that could be more viable target for anticancer therapy. The network surrounding the regulation of p73 is extensive and has several potential targets for cancer therapy. One of the most studied is Itch ligase, the negative regulator of p73 levels. Gene therapy directed towards knockdown of Itch ligase is a potential approach but in need for more in vivo proof. p73 has two isoforms, transactivating TA-forms and dominant-negative ΔN-forms. The specific regulation of these isoforms could also offer a possible way for more effective cancer treatment. The literature work includes information of structures, isoforms, functions and possible therapeutic targets of p73. Also the main therapeutic approaches to date are introduced. The experimental part is based on transfection and cytotoxicity studies done e.g. in pancreatic cancer cells (Mia PaCa-2, PANC1, BxPc-3 and HPAC). The aim of the experimental work was to optimize the conditions for effective transfection with DAB16 dendrimer nanoparticles and to measure the cytotoxicity of plain dendrimers and DAB16-pDNA complexes. Also the protein levels of p73 and Itch ligase were measured by Western blotting. The work was done as a part of a bigger project, which was aiming to down regulate Itch ligase (negative regulator of p73) by siRNA/shRNA. Tranfection results were promising, showing good transfection efficacy with DAB16 N/P30 in pancreatic cancer cells (except in BxPc-3). Pancreatic cancer cells showed recovery in 3 days after they were exposed to plain dendrimer solution or to DAB16-pDNA. Measurement of protein levels by Western blotting was not optimal and the proposals for the improvement regarding e.g. the gels and the extracted protein amounts have been done.
Resumo:
Glioblastoma (GBM; grade IV astrocytoma) is the most malignant and common primary brain tumor in adults. Using combination of 2-DE and MALDI-TOF MS, we analyzed 14 GBM and 6 normal control sera and identified haptoglobin alpha 2 chain as an up-regulated serum protein in GBM patients. GBM-specific up-regulation was confirmed by ELISA based quantitation of haptoglobin (Hp) in the serum of 99 GBM patients as against lower grades (49 grade III/AA; 26 grade II/DA) and 26 normal individuals (p = 0.0001). Further validation using RT-qPCR on an independent set (n = 78) of tumor and normal brain (n = 4) samples and immunohistochemcial staining on a subset (n = 42) of above samples showed increasing levels of transcript and protein with tumor grade and were highest in GBM (p = < 0.0001 and < 0.0001, respectively). Overexpression of Hp either by stable integration of Hp cDNA or exogenous addition of purified Hp to immortalized astrocytes resulted in increased cell migration. RNAi-mediated silencing of Hp in glioma cells decreased cell migration. Further, we demonstrate that both human glioma and mouse melanoma cells overexpressing Hp showed increased tumor growth. Thus, we have identified haptoglobin as a GBM-specific serum marker with a role on glioma tumor growth and migration.