964 resultados para PYRAMIDAL NEURONS
Resumo:
Sensory axons of different sensory modalities project into typical domains within insect ganglia. Tactile and gustatory axons project into a ventral layer of neuropil and proprioceptive afferents, including chordotonal axone, into an intermediate or dorsal layer. Here, we describe the central projections of sensory neurons in the first instar Drosophila larva, relating them to the projection of the same sensory afferents in the embryo and to sensory afferents of similar type in other insects. Several neurons show marked morphologic changes in their axon terminals in the transition between the embryo and larva. During a short morphogenetic period late in embryogenesis, the axon terminals of the dorsal bipolar dendrite stretch receptor change their shape and their distribution within the neuromere. In the larva, external sense organ neurons (es) project their axons into a ventral layer of neuropil. Chordotonal sensory neurons (ch) project into a slightly more dorsal region that is comparable to their projection in adults. The multiple dendrite (md) neurons show two distinctive classes of projection. One group of md neurons projects into the ventral-most neuropil region, the same region into which es neurons project. Members of this group are related by lineage to es neurons or share a requirement for expression of the same proneural gene during development. Other md neurons project into a more dorsal region. Sensory receptors projecting into dorsal neuropil possibly provide proprioceptive feedback from the periphery to central motorneurons and are candidates for future genetic and cellular analysis of simple neural circuitry. J. Comp. Neurol. 425:34-44, 2000. (C) 2000 Wiley-Liss, Inc.
Resumo:
The 75 kD low-affinity neurotrophin receptor (p75(NTR)) is expressed in developing and axotomised spinal motor neurons. There is now convincing evidence that p75NTR can, under some circumstances, become cytotoxic and promote neuronal cell death. We report here that a single application of antisense p75(NTR) oligodeoxynucleotides to the proximal nerve stumps of neonatal rats significantly reduces the loss of axotomised motor neurons compared to controls treated with nonsense oligodeoxynucleotides or phosphate-buffered saline. Our investigations also show that daily systemic intraperitoneal injections of antisense p75(NTR) oligodeoxynucleotides for 14 days significantly reduce the loss of axotomised motor neurons compared to controls. Furthermore, we found that systemic delivery over a similar period continues to be effective following axotomy when intraperitoneal injections were 1) administered after a delay of 24 hr, 2) limited to the first 7 days, or 3) administered every third day. In addition, p75(NTR) protein levels were reduced in spinal motor neurons following treatment with antisense p75(NTR) oligodeoxynucleotides. There were also no obvious side effects associated with antisense p75(NTR) oligodeoxynucleotide treatments as determined by behavioural observations and postnatal weight gain. Our findings indicate that antisense-based strategies could be a novel approach for the prevention of motor neuron degeneration associated with injuries or disease. (C) 2001 Wiley-Liss, Inc.
Resumo:
Neurons in the central amygdala express two distinct types of ionotropic GABA receptor. One is the classical GABA(A) receptor that is blocked by low concentrations of bicuculline and positively modulated by benzodiazepines. The other is a novel type of ionotropic GABA receptor that is less sensitive to bicuculline but blocked by the GABA(C) receptor antagonist (1,2,5,6-tetrohydropyridine-4-yl) methylphosphinic acid (TPMPA) and by benzodiazepines. In this study, we examine the distribution of these two receptor types. Recordings of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) showed a wide variation in amplitude. Most events had amplitudes of 100 pA. Large-amplitude events also had rise times faster than small-amplitude events. Large-amplitude events were fully blocked by 10 muM bicuculline but unaffected by TPMPA. Small amplitude events were partially blocked by both bicuculline and TPMPA. Focal application of hypertonic sucrose to the soma evoked large-amplitude mIPSCs, whereas focal dendritic application of sucrose evoked small-amplitude mIPSCs. Thus inhibitory synapses on the dendrites of neurons in the central amygdala express both types of GABA receptor, but somatic synapses expressed purely GABA(A) receptors. Minimal stimulation revealed that inhibitory inputs arising from the laterally located intercalated cells innervate dendritic synapses, whereas inhibitory inputs of medial origin innervated somatic inhibitory synapses. These results show that different types of ionotropic GABA receptors are targeted to spatially and functionally distinct synapses. Thus benzodiazepines will have different modulatory effects on different inhibitory pathways in the central amygdala.
Resumo:
Principal neurons in the lateral nucleus of the amygdala (LA) exhibit a continuum of firing properties in response to prolonged current injections ranging from those that accommodate fully to those that fire repetitively. In most cells, trains of action potentials are followed by a slow after hyperpolarization (AHP) lasting several seconds. Reducing calcium influx either by lowering concentrations of extracellular calcium or by applying nickel abolished the AHP, confirming it is mediated by calcium influx. Blockade of large conductance calcium-activated potassium channel (BK) channels with paxilline, iberiotoxin, or TEA revealed that BK channels are involved in action potential repolarization but only make a small contribution to the fast AHP that follows action potentials. The fast AHP was, however, markedly reduced by low concentrations of 4-aminopyridine and alpha-dendrotoxin, indicating the involvement of voltage-gated potassium channels in the fast AHP. The medium AHP was blocked by apamin and UCL1848, indicating it was mediated by small conductance calcium-activated potassium channel (SK) channels. Blockade of these channels had no effect on instantaneous firing. However, enhancement of the SK-mediated current by 1-ethyl-2-benzimidazolinone or paxilline increased the early interspike interval, showing that under physiological conditions activation of SK channels is insufficient to control firing frequency. The slow AHP, mediated by non-SK BK channels, was apamin-insensitive but was modulated by carbachol and noradrenaline. Tetanic stimulation of cholinergic afferents to the LA depressed the slow AHP and led to an increase in firing. These results show that BK, SK, and non-BK SK-mediated calcium-activated potassium currents are present in principal LA neurons and play distinct physiological roles.
Resumo:
1. In vivo studies have shown that the low-affinity 75 kDa neurotrophin receptor (p75NTR) is involved in axotomy-induced cell death of sensory and motor neurons. To further examine the importance of p75NTR in mediating neuronal death in vivo , we examined the effect of axotomy in the p75NTR-knockout mouse, which has a disrupted ligand-binding domain. 2. The extent of sensory and motor neuron loss in the p75NTR-knockout mouse following axotomy was not significantly different to that in wild-type mice. This suggests that disruption of the ligand-binding domain is insufficient to block the cell death process in axotomized neurons. 3. Immunohistochemical studies showed that axotomized neurons continue to express this mutant receptor with its intracellular death-signalling moiety intact. 4. Treatment with antisense oligonucleotides targeted against p75NTR resulted in significant reduction in the loss of axotomized neurons in the knockout mouse. 5. These data suggest that the intracellular domain of p75NTR is essential for death-signalling and that p75NTR can signal apoptosis, despite a disrupted ligand-binding domain.
Resumo:
We previously showed that 16-day-old rats exposed to a relatively high dose of ethanol at 10-15 postnatal days of age have fewer neurons in the hilus region of the hippocampus compared with controls. Dentate gyrus granule cell numbers, however, showed no statistically significant changes attributable to the ethanol treatment. It is possible that some of the changes in brain morphology, brought about as a result of the exposure to ethanol during early life, may not be manifested until later in life. This question has been further addressed in an extension to our previous study. Wistar rats were exposed to a relatively high daily dose of ethanol on postnatal days 10-15 by placement in a chamber containing ethanol vapour, for 3 h/day. The blood ethanol concentration was found to be similar to430 mg/dl at the end of the period of exposure. Groups of ethanol-treated (ET), separation control (SC), and mother-reared control (MRC) rats were anaesthetised and killed either at 16 or 30 days of age by perfusion with phosphate-buffered 2.5% glutaraldehyde. The Cavalieri principle and the physical disector methods were used to estimate, respectively, the regional volumes and neuron cell numerical densities in the hilus and granule cell regions of the dentate gyrus. The total numbers of neurons in the hilus region and granule cell layer were computed from these estimates. It was found that 16-day-old animals had 398,000-441,000 granule cells, irrespective of group. The numbers of granule cells increased such that by 30 days of age, rats had 487,000-525,500 granule cells. However, there were no significant differences between ethanol-treated rats and their age-matched controls in granule cell numbers. In contrast, ethanol-treated rats had slightly but significantly fewer neurons in the hilus region than did control animals at 16 days of age, but not at 30 days of age. Therefore, it appears that a short period of ethanol exposure during early life can have effects on neuron numbers of some hippocampal neurons, but not others. The effects on hilar neuron numbers, observed as a result of such short periods of ethanol treatment, appeared to be transitory. (C) 2003 Wiley-Liss, Inc.
Resumo:
Using whole cell recordings from acute slices of the rat amygdala, we have examined the physiological properties of and synaptic connectivity to neurons in the lateral sector of the central amygdala (CeA). Based on their response to depolarizing current injections, CeA neurons could be divided into three types. Adapting neurons fired action potentials at the start of the current injections at high frequency and then showed complete spike-frequency adaptation with only six to seven action potentials evoked with suprathreshold current injections. Late-firing neurons fired action potentials with a prolonged delay at threshold but then discharged continuously with larger current injections. Repetitive firers discharged at the start of the current injection at threshold and then discharged continuously with larger current injections. All three cells showed prolonged afterhyperpolarizations (AHPs) that followed trains of action potentials. The AHP was longer lasting with a larger slow component in adapting neurons. The AHP in all cell types contained a fast component that was inhibited by the SK channel blocker UCL1848. The slow component, not blocked by UCL1848, was blocked by isoprenaline and was significantly larger in adapting neurons. Blockade of SK channels increased the discharge frequency in late firers and regular-spiking neurons but had no effect on adapting neurons. Blockade of the slow AHP with isoprenaline had no effect on any cell type. All cells received a mixed glutamatergic and GABAergic input from a medial pathway. Electrical stimulation of the lateral (LA) and basolateral (BLA)nuclei evoked a large monosynaptic glutamatergic response followed by a disynaptic inhibitory postsynaptic potential. Activation of neurons in the LA and BLA by puffer application of glutamate evoked a small monosynaptic response in 13 of 55 CeA neurons. Local application of glutamate to the CeL evoked a GABAergic response in all cells. These results show that at least three types of neurons are present in the CeA that can be distinguished on their firing properties. The firing frequency of two of these cell types is determined by activation of SK channels. Cells receive a small input from the LA and BLA but may receive inputs that course through these nuclei en route to the CeA.
Resumo:
Odorant-induced currents in mammalian olfactory receptor neurons have proved difficult to obtain reliably using conventional whole-cell recording. By using a mathematical model of the electrical circuit of the patch and rest-of-cell, we demonstrate how cell-attached patch measurements can be used to quantitatively analyze responses to odorants or a high (100 mM) K+ solution. High K+ induced an immediate current flux from cell to pipette, which was modeled as a depolarization of similar to 52 mV, close to that expected from the Nernst equation (56 mV), and no change in the patch conductance. By contrast, a cocktail of cAMP-stimulating odorants induced a current flux from pipette into cell following a significant (4-10 s) delay. This was modeled as an average patch conductance increase of 36 pS and a depolarization of 13 mV, Odorant-induced single channels had a conductance of 16 pS. In cells bathed with no Mg2+ and 0.25 mM Ca2+, odorants induced a current flow from cell to pipette, which was modeled as a patch conductance increase of similar to 115 pS and depolarization of similar to 32 mV, All these results are consistent with cAMP-gated cation channels dominating the odorant response, This approach, which provides useful estimates of odorant-induced voltage and conductance changes, is applicable to similar measurements in any small cells.
Resumo:
The embryonic peripheral nervous system of Drosophila contains two main types of sensory neurons: type I neurons, which innervate external sense organs and chordotonal organs, and type II multidendritic neurons, Here, we analyse the origin of the difference between type I and type II in the case of the neurons that depend on the proneural genes of the achaete-scute complex (ASC), We show that, in Notch(-) embryos, the type I neurons are missing while type nr neurons are produced in excess, indicating that the type I/type II choice relies on Notch-mediated cell communication, In contrast, both type I and type II neurons are absent in numb(-) embryos and after ubiquitous expression of tramtrack, indicating that the activity of numb and the absence of tramtrack are required to produce both external sense organ and multidendritic neural fates, The analysis of string(-) embryos reveals that when the precursors are unable to divide they differentiate mostly into type II neurons, indicating that the type II is the default neuronal fate, We also report a new mutant phenotype where the ASC-dependent neurons are converted into-type II neurons, providing evidence for the existence of one or more genes required for maintaining the alternative (type I) fate, Our results suggest that the same mechanism of type I/type II specification may operate at a late step of the ASC-dependent lineages, when multidendritic neurons arise as siblings of the external sense organ neurons and, at an early step, when other multidendritic neurons precursors arise as siblings of external sense organ precursors.
Resumo:
The dependence of currents through the cyclic nucleotide-gated (CNG) channels of mammalian olfactory receptor neurons (ORNs) on the concentration of NaCl was studied in excised inside-out patches from their dendritic knobs using the patch-clamp technique. With a saturating concentration (100 mu M) of adenosine 3', 5'-cyclic monophosphate (cAMP), the changes in the reversal potential of macroscopic currents were studied at NaCl concentrations from 25 to 300 mM. In symmetrical NaCl solutions without the addition of divalent cations, the current-voltage relations were almost linear, reversing close to O mV. When the external NaCl concentration was maintained at 150 mM and the internal concentrations were varied, the reversal potentials of the cAMP-activated currents closely followed the Na+ equilibrium potential indicating that P-Cl/P-Na approximate to 0. However, at low external NaCl concentrations (less than or equal to 100 mM) there was some significant chloride permeability. Our results further indicated that Na+ currents through these channels: (i) did not obey the independence principle; (ii) showed saturation kinetics with K(m)s in the range of 100-150 mM and (iii) displayed a lack of voltage dependence of conductance in asymmetric solutions that suggested that ion-binding sites were situated midway along the channel. Together, these characteristics indicate that the permeation properties of the olfactory CNG channels are significantly different from those of photoreceptor CNG channels.
Resumo:
Neuron-glia interaction is involved in physiological function of neurons, however, recent evidences have suggested glial cells as participants in neurotoxic and neurotrophic mechanisms of neurodegenerative/neuroregenerative processes. Laser microdissection offers a unique opportunity to study molecular regulation in specific immunolabeled cell types. However, an adequate protocol to allow morphological and molecular analysis of rodent spinal cord astrocyte, microglia and motoneurons remains a big challenge. In this paper we present a quick method to immunolabel those cells in flash frozen sections to be used in molecular biology analyses after laser microdissection and pressure catapulting.
Resumo:
Neuropeptide Y (NPY) is an important neuromodulator found in central and peripheral neurons. NPY was investigated in the peripheral auditory pathway of conventional housed rats and after nontraumatic sound stimulation in order to localize the molecule and also to describe its response to sound stimulus. Rats from the stimulation experiment were housed in monitored sound-proofed rooms. Stimulated animals received sound stimuli (pure tone bursts of 8 kHz, 50 ms duration presented at a rate of 2 per second) at an intensity of 80 dB sound pressure level for 1 hr per day during 7 days. After euthanizing, rat cochleae were processed for one-color immunohistochemistry. The NPY immunoreactivity was detected in inner hair cells (IHC) and also in pillar and Deiters` cells of organ of Corti, and in the spiral ganglion putative type I (1,009 m3) and type II (225 m3) neurons. Outer hair cells (OHC) showed light immunoreaction product. Quantitative microdensitometry showed strong and moderate immunoreactions in IHC and spiral ganglion neurons, respectively, without differences among cochlear turns. One week of acoustic stimulation was not able to induce changes in the NPY immunoreactivity intensity in the IHC of cochlea. However, stimulated rats showed an overall increase in the number of putative type I and type II NPY immunoreactive spiral ganglion neurons with strong, moderate, and weak immunolabeling. Localization and responses of NPY to acoustic stimulus suggest an involvement of the neuropeptide in the neuromodulation of afferent transmission in the rat peripheral auditory pathway.
Resumo:
Background: Arachidonic acid is released from cellular membranes by the action of phospholipase A(2) (PLA(2)) and is implicated in microtubule-associated protein Tau phosphorylation. Tau hyperphosphorylation affects its ability to stabilize microtubules. Objective: To determine the effect of PLA(2) inhibition on the phosphorylation state of Tau phosphoepitopes in primary cultures of hippocampal neurons. Methods: 4 DIC neurons were incubated at different concentrations of methyl-arachidonylfluorophosphonate (MAFP), an irreversible inhibitor of cPLA(2) and iPLA(2). Changes on Tau phosphorylation were determined by Western blotting with a panel of anti-Tau antibodies (C-terminal, Ser199/202, Ser202/205, Ser396 and Ser214). Results: The Ser214 site was hyperphosphorylated upon MAFP treatment. Significant differences were observed with 10 mu M (p = 0.01), 50 mu M (p = 0.01) and 100 mu M (p = 0.05) of MAFP. Less-intense changes were found in other phosphoepitopes. Conclusion: The present findings indicate that the phosphorylation of Ser214 is regulated by c- and/or iPLA(2), whereas other phosphoepitopes primarily regulated by GKS3b were not affected. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The persistent nature of addiction has been associated with activity-induced plasticity of neurons within the striatum and nucleus accumbens (NAc). To identify the molecular processes leading to these adaptations, we performed Cre/loxP-mediated genetic ablations of two key regulators of gene expression in response to activity, the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) and its postulated main target, the cAMP-responsive element binding protein (CREB). We found that acute cocaine-induced gene expression in the striatum was largely unaffected by the loss of CaMKIV. On the behavioral level, mice lacking CaMKIV in dopaminoceptive neurons displayed increased sensitivity to cocaine as evidenced by augmented expression of locomotor sensitization and enhanced conditioned place preference and reinstatement after extinction. However, the loss of CREB in the forebrain had no effect on either of these behaviors, even though it robustly blunted acute cocaine-induced transcription. To test the relevance of these observations for addiction in humans, we performed an association study of CAMK4 and CREB promoter polymorphisms with cocaine addiction in a large sample of addicts. We found that a single nucleotide polymorphism in the CAMK4 promoter was significantly associated with cocaine addiction, whereas variations in the CREB promoter regions did not correlate with drug abuse. These findings reveal a critical role for CaMKIV in the development and persistence of cocaine-induced behaviors, through mechanisms dissociated from acute effects on gene expression and CREB-dependent transcription.