949 resultados para PSEUDOMONAS SP STRAIN-CF600
Resumo:
Insertion of lux genes, encoding for bioluminescence in naturally bioluminescent marine bacteria, into the genome of Pseudomonas fluorescens resulted in a bioluminescent strain of this terrestrial bacterium. The lux- marked bacterium was used to toxicity test the chlorobenzene series. By correlating chlorobenzenes 50% effective concentration (EC50) values against physiochemical parameters, the physiochemical properties of chlorobenzenes that elicit toxic responses were investigated. The results showed that the more chlorinated the compounds, the more toxic they were to lux-marked P. fluorescens. Furthermore, it was shown that the more symmetrical the compound, the greater its toxicity to P. fluorescens. In general, the toxicity of a chlorobenzene was inversely proportional to its solubility (S) and directly proportional to its lipophilicity (K(ow). By correlating lux- marked P. fluorescens EC50 values, determined for chlorobenzenes, with toxicity values determined using Pimephales promelas (fathead minnow), Cyclotella meneghiniana (diatom), and Vibrio fischeri (marine bacterium), it was apparent that lux-marked P. fluorescens correlated well with freshwater species such as the diatoms and fathead minnow but not with the bioluminescent marine bacterium V. fischeri. The implications of these findings are that a terrestrial bacterium such as P. fluorescens should be used for toxicity testing of soils and freshwaters rather than the marine bacterium V. fischeri.
Resumo:
Bacterial epiphytes isolated from marine eukaryotes were screened for the production of quorum sensing inhibitory compounds (QSIs). Marine isolate KS8, identified as a Pseudoalteromonas sp., was found to display strong quorum sensing inhibitory (QSI) activity against acyl homoserine lactone (AHL)-based reporter strains Chromobacterium violaceum ATCC 12472 and CV026. KS8 supernatant significantly reduced biofilm biomass during biofilm formation (−63%) and in pre-established, mature P. aeruginosa PAO1 biofilms (−33%). KS8 supernatant also caused a 0.97-log reduction (−89%) and a 2-log reduction (−99%) in PAO1 biofilm viable counts in the biofilm formation assay and the biofilm eradication assay respectively. The crude organic extract of KS8 had a minimum inhibitory concentration (MIC) of 2 mg/mL against PAO1 but no minimum bactericidal concentration (MBC) was observed over the concentration range tested (MBC > 16 mg/mL). Sub-MIC concentrations (1 mg/mL) of KS8 crude organic extract significantly reduced the quorum sensing (QS)-dependent production of both pyoverdin and pyocyanin in P. aeruginosa PAO1 without affecting growth. A combinatorial approach using tobramycin and the crude organic extract at 1 mg/mL against planktonic P. aeruginosa PAO1 was found to increase the efficacy of tobramycin ten-fold, decreasing the MIC from 0.75 to 0.075 µg/mL. These data support the validity of approaches combining conventional antibiotic therapy with non-antibiotic compounds to improve the efficacy of current treatments.
Resumo:
The primary enzyme involved in polyphosphate (polyP) synthesis, polyP kinase (ppk), has been deleted in Pseudomonas putida KT2440. This has resulted in a threefold to sixfold reduction in polyhydroxyalkanoate (PHA) accumulation compared with the wild type under conditions of nitrogen limitation, with either temperature or oxidative (H2O2) stress, when grown on glucose. The accumulation of PHA by Δppk mutant was the same as the wild type under nitrogen-limiting growth conditions. There was no difference in polyP levels between wild-type and Δppk strains under all growth conditions tested. In the Δppk mutant proteome, polyP kinase (PPK) was undetectable, but up-regulation of the polyp-associated proteins polyP adenosine triphosphate (ATP)/nicotinamide adenine dinucleotide (NAD) kinase (PpnK), a putative polyP adenosine monophosphate (AMP) phosphotransferase (PP_1752), and exopolyphosphatase was observed. Δppk strain exhibited significantly retarded growth with glycerol as carbon and energy source (42 h of lag period compared with 24 h in wild-type strain) but similar growth to the wild-type strain with glucose. Analysis of gene transcription revealed downregulation of glycerol kinase and the glycerol facilitator respectively. Glycerol kinase protein expression was also downregulated in the Δppk mutant. The deletion of ppk did not affect motility but reduced biofilm formation. Thus, the knockout of the ppk gene has resulted in a number of phenotypic changes to the mutant without affecting polyP accumulation.
Kroppenstedtia pulmonis sp. nov. and Kroppenstedtia sanguinis sp. nov., isolated from human patients
Resumo:
Three human clinical strains (W9323T , X0209T and X0394) isolated from lung biopsy, blood and cerebral spinal fluid, respectively, were characterized using a polyphasic taxonomic approach. Comparative analysis of the 16S rRNA gene sequences showed the three strains belonged to two novel branches within the genus Kroppenstedtia : 16S rRNA gene sequence analysis of W9323T showed closest sequence similarity to Kroppenstedtia eburnea JFMB- ATET (95.3 %), Kroppenstedtia guangzhouensis GD02T (94.7 %) and strain X0209T (94.6 %); sequence analysis of strain X0209T showed closest sequence similarity to K . eburnea JFMB- ATET (96.4 %) and K. guangzhouensis GD02T (96.0 %). Strains X0209T and X0394 were 99.9 % similar to each other by 16S rRNA gene sequence analysis. The DNA- DNA relatedness was 94.6 %, confirming that X0209T and X0394 belong to the same species. Chemotaxonomic data for strains W9323T and X0209T were consistent with those described for the genus Kroppenstedtia : whole- cell peptidoglycan contained LL- diaminopimelic acid; the major cellular fatty acids were iso- C15 and anteiso- C15 ; and the major menaquinone was MK- 7. Different endospore morphology, carbon utilization profiles, and whole cell wall sugar patterns of strains W9323T and X0209T supported by phylogenetic analysis enabled us to conclude that the strains represent two new species within the genus Kroppenstedtia , for which the names Kroppenstedtia pulmonis sp. nov. (type strain W9323T = DSM 45752T = CCUG 68107T) and Kroppenstedtia sanguinis sp. nov. (type strain X0209T = DSM 45749T = CCUG 38657T) are proposed.
Resumo:
A plant growth-promoting bacterial (PGPB) strain SC2b was isolated from the rhizosphere of Sedum plumbizincicola grown in lead (Pb)/zinc (Zn) mine soils and characterized as Bacillus sp. based on (1) morphological and biochemical characteristics and (2) partial 16S ribosomal DNA sequencing analysis. Strain SC2b exhibited high levels of resistance to cadmium (Cd) (300 mg/L), Zn (730 mg/L), and Pb (1400 mg/L). This strain also showed various plant growth-promoting (PGP) features such as utilization of 1-aminocyclopropane-1-carboxylate, solubilization of phosphate, and production of indole-3-acetic acid and siderophore. The strain mobilized high concentration of heavy metals from soils and exhibited different biosorption capacity toward the tested metal ions. Strain SC2b was further assessed for PGP activity by phytagar assay with a model plant Brassica napus. Inoculation of SC2b increased the biomass and vigor index of B. napus. Considering such potential, a pot experiment was conducted to assess the effects of inoculating the metal-resistant PGPB SC2b on growth and uptake of Cd, Zn and Pb by S. plumbizincicola in metal-contaminated agricultural soils. Inoculation with SC2b elevated the shoot and root biomass and leaf chlorophyll content of S. plumbizincicola. Similarly, plants inoculated with SC2b demonstrated markedly higher Cd and Zn accumulation in the root and shoot system, indicating that SC2b enhanced Cd and Zn uptake by S. plumbizincicola through metal mobilization or plant-microbial mediated changes in chemical or biological soil properties. Data demonstrated that the PGPB Bacillus sp. SC2b might serve as a future biofertilizer and an effective metal mobilizing bioinoculant for rhizoremediation of metal polluted soils.
Resumo:
La saprolégniose est une maladie fongique causée par le champignon aquatique Saprolegnia sp. qui affecte les poissons sauvages et ceux provenant des piscicultures. L’apparition de touffes cotonneuses semblables à de la ouate de couleur blanche à grise est souvent la première indication de l’infection. Ce saprophyte ubiquitaire se nourrit habituellement des œufs de poissons morts, mais peut se propager rapidement aux œufs sains causant la mort de ces derniers. La saprolégniose est souvent une infection secondaire, mais des souches virulentes peuvent facilement se développer sur les salmonidés ayant subi un stress ou une mauvaise manipulation. De grandes pertes économiques associées à la saprolégniose sont rapportées chaque année à travers le monde surtout dans l’industrie de la pisciculture. Jusqu’en 2002, le contrôle de la saprolégniose pouvait se faire par l’utilisation du vert de malachite, un colorant organique ayant une grande activité antifongique. Malheureusement, cette molécule a été bannie à cause de ses propriétés cancérigènes. Aucun composé aussi efficace n’est actuellement disponible pour traiter les infections de la saprolégniose. Des molécules ou extraits naturels ayant un potentiel antifongique ont donc été testés à l’aide de deux techniques (par graines de chanvre et par cylindre d’agar). Les molécules d’un extrait de propolis (cire de ruches d’abeilles) démontrant de l’activité anti-Saprolegnia ont été identifiées. De plus, une bactérie, Pseudomonas aeruginosa, pouvant être retrouvée dans le même environnement que Saprolegnia sp. a démontré un effet antagoniste au champignon. Une molécule de signalisation intercellulaire produite par P. aeruginosa, 4-hydroxy-2-heptylquinoline (HHQ), a été identifiée comme responsable de l’effet antagoniste contre Saprolegnia sp.
Resumo:
La production excessive de mucus visqueaux dans les poumons des patients atteints de la fibrose kystique (FK) gêne la diffusion des médicaments et entraîne des infections bactériennes. En effet, l’infection pulmonaire par Pseudomonas aeruginosa (PA) est la principale cause de mortalité. Les travaux effectués dans cette thèse avaient pour but de développer des nouvelles formulations de nanoparticules (NP) et de liposomes (LP) chargées avec des antibiotiques pour erradiquer le PA chez les patients atteints de KF. Tout d’abord, les polymères PEG-g-PLA et PLA-OH ont été synthétisés et caractérisés. Ensuite, l'efficacité d'encapsulation (EE) de la tobramycine, du sulfate de colistine et de la lévofloxacine (lévo) a été testée dans des NP de PEG-g-PLA et / ou PLA-OH. Les premiers essais d'optimisation ont montré que les NP chargées avec la lévo présentaient une augmentation de l’EE. La lévo reste alors le médicament de choix. Cependant, la meilleure charge de médicament obtenue était de 0,02% m/m. Pour cette raison, nous avons décidé d'évaluer l'encapsulation de la lévo dans les LP. En fait, des LP chargés de lévo ont présenté une EE d’environ 8% m/m. De plus, la taille et la charge de ces LP étaient appropriées pour la pénétration du vecteur dans le mucus. Le test de biofilm n'est pas reproductible, mais le test standard a montré que la souche mucoïde de PA était susceptible à la lévo. Ainsi, nous avons comparé les activités des LP fraîchement préparées (vides et chargés ) et de la lévo libre sous la forme planctonique de PA. Les résultats ont montré que des LP vides ne gênent pas la croissance bactérienne. Pour la souche mucoïde (Susceptible à la lévo) les LP chargés et le médicament libre ont présenté la même concentration minimale inhibitrice (CMI). Toutefois, les souches non mucoïdes (résistant à la lévo) ont présenté une CMI deux fois plus faible que celle pour le médicament libre. Finalement, les LP se sont avérés plus appropriés pour encapsuler des médicaments hydrophiles que les NP de PEG-g-PLA. En outre, les LP semblent améliorer le traitement contre la souche résistante de PA. Toutefois, des études complémentaires doivent être effectuées afin d'assurer la capacité des liposomes èa traiter la fibrose kystique.
Resumo:
The main source of protein for human and animal consumption is from the agricultural sector, where the production is vulnerable to diseases, fluctuations in climatic conditions and deteriorating hydrological conditions due to water pollution. Therefore Single Cell Protein (SCP) production has evolved as an excellent alternative. Among all sources of microbial protein, yeast has attained global acceptability and has been preferred for SCP production. The screening and evaluation of nutritional and other culture variables of microorganisms are very important in the development of a bioprocess for SCP production. The application of statistical experimental design in bioprocess development can result in improved product yields, reduced process variability, closer confirmation of the output response to target requirements and reduced development time and overall cost.The present work was undertaken to develop a bioprocess technology for the mass production of a marine yeast, Candida sp.S27. Yeasts isolated from the offshore waters of the South west coast of India and maintained in the Microbiology Laboratory were subjected to various tests for the selection of a potent strain for biomass production. The selected marine yeast was identified based on ITS sequencing. Biochemical/nutritional characterization of Candida sp.S27 was carried out. Using Response Surface Methodology (RSM) the process parameters (pH, temperature and salinity) were optimized. For mass production of yeast biomass, a chemically defined medium (Barnett and Ingram, 1955) and a crude medium (Molasses-Yeast extract) were optimized using RSM. Scale up of biomass production was done in a Bench top Fermenter using these two optimized media. Comparative efficacy of the defined and crude media were estimated besides nutritional evaluation of the biomass developed using these two optimized media.
Resumo:
This thesis presents a detailed account of a cost - effective approach towards enhanced production of alkaline protease at profitable levels using different fermentation designs employing cheap agro-industrial residues. It involves the optimisation of process parameters for the production of a thermostable alkaline protease by Vibrio sp. V26 under solid state, submerged and biphasic fermentations, production of the enzyme using cell immobilisation technology and the application of the crude enzyme on the deproteinisation of crustacean waste.The present investigation suggests an economic move towards Improved production of alkaline protease at gainful altitudes employing different fermentation designs utilising inexpensive agro-industrial residues. Moreover, the use of agro-industrial and other solid waste substrates for fermentation helps to provide a substitute in conserving the already dwindling global energy resources. Another alternative for accomplishing economically feasible production is by the use of immobilisation technique. This method avoids the wasteful expense of continually growing microorganisms. The high protease producing potential of the organism under study ascertains their exploitation in the utilisation and management of wastes. However, strain improvement studies for the production of high yielding variants using mutagens or by gene transfer are required before recommending them to Industries.Industries, all over the world, have made several attempts to exploit the microbial diversity of this planet. For sustainable development, it is essential to discover, develop and defend this natural prosperity. The Industrial development of any country is critically dependent on the intellectual and financial investment in this area. The need of the hour is to harness the beneficial uses of microbes for maximum utilisation of natural resources and technological yields. Owing to the multitude of applications in a variety of industrial sectors, there has always been an increasing demand for novel producers and resources of alkaline proteases as well as for innovative methods of production at a commercial altitude. This investigation forms a humble endeavour towards this perspective and bequeaths hope and inspiration for inventions to follow.
Resumo:
The thesis presents a detailed account of the alkaline protease produced by Vibrio sp.(V26) a mangrove isolate,and the application of this enzyme in different fields.The protease producer strain was identified on the basis of biochemical characteristice,putative virulence traits and 16S rRNA gene sequencing.The purification and characterization of the protease has been carried out. Along with this, an attempt has been made to identifiy the protease gene. The physical parameters as well as the media components influencing protease production were optimized using Response Surfce Methodology(RSM).The scale up of the application of the protease from Vibrio sp.(V26) in the dissociation of cells in animal cell culture,in the recovery of silver from used X-ray films as well as an ingredient in commercial detergents were investigated.
Resumo:
This thesis entitled Physicochemical and molecular characterization of bacteriophages ΦSP-1and ΦSP-3, specific for pathogenic Salmonella and evaluation of their potential as biocontrol agent . Salmonella were screened using standard methodologies from various environmental samples including chicken caecum. Salmonella strains, which were previously isolated and stocked in the lab, were also included in this study as host, for screening Salmonella specific lytic phages. The Salmonella strain in this study designated as S49 which helped in phage propagation by acting as host bacteria was identified as Salmonella enterica subsp. enterica by 16S rRNA gene analysis and serotyping . A total of three Salmonella specific phage named as ΦSP-1, ΦSP-2 and ΦSP-3 were isolated from chicken intestine samples via an enrichment protocol employing the double agar overlay method. ΦSP-1 and ΦSP-3 showing consistent lytic nature were selected for further study and were purified by repeated plating after picking of single isolated plaques from the lawns of Salmonella S49 plates. Both the phages produced small, clear plaques indicating their lytic nature. ΦSP-1 and ΦSP-3 were concentrated employing PEG-NaCl precipitation method before further characterization. The focus of present study was to isolate, characterize and verify the efficacy of lytic bacteriophages against the robust pathogen Salmonella, capable of surviving under various hostile conditions. Two phages, ΦSP-1 and ΦSP-3, belonging to two families, Podovoridae and Siphoviridae were isolated.
Resumo:
The thesis comprises a set of experiments mainly focused on the improvement of L-glutamic acid fennentation. Much attention has been given to use of locally available raw materials, culturing the organism on inert solid substrates and also immobilization of the bacterial cells from the view point of long term utilization of biocatalyst and continuous operation of the stabilized system. Studies were also carried out for the down stream processing for the extraction and purification of L-glutamic acid. An attempt was made to study the morphological features of the microorganism including the cell premeability. In relation with the accumulation of glutamic acid within the cells an approach was made to study the behaviour of the Brevibacterium cells when they are exposed to hyper osmotic environment. Attempts were also made to study the requirement of iron and production of siderophores by this microbial strain. The search for a suitable nitrogen source for glutamate fermentation ended with a promising result that they got a potent urease activity and it can be utilized for many biotransfonnation studies. The entire thesis is presented in three sections, viz. introductory section, experimental section and the concluding section
Resumo:
The production of heavy metals has increased quickly since the industrial revolution. Heavy metals frequently form compounds that can be toxic, carcinogenic, or mutagenic, even in very small concentrations. The usual techniques of removing metals from wastewaters are in general expensive and have many restrictions. Alternative methods of metal removal and recovery based on biological materials have been measured. Among various agents, the use of microbes for the removal of metals from industrial and municipal wastewater has been proposed as a promising alternative to conventional heavy metal management strategies in past decades. Thus, the present study aims to isolate and characterize bacteria from soil, sediment, and waters of metal-contaminated industrial area to study the zinc resistance patterns and the zinc bioaccumulation potential of the selected microorganism. Zinc analysis of the samples revealed that concentrations varying from 39.832 m g/L to 310.24 m g/L in water, 12.81 m g/g to 407.53 m g/g in soil, and 81.06 m g/g to 829.54 m g/g in sediment are present. Bacterial zinc resistance study showed that tolerance to Zn was relatively low (<500 m g/ml). Ten bacterial genera were represented in soil and 11 from water, while only 5 bacterial genera were recorded from sediment samples. Bacillus, Pseudomonas , and Enterobacter were found in soil, sediment, and water samples. Highly zincresistant Bacillus sp. was selected for zinc removal experiment. Zinc removal studies revealed that at pH 5 about 40% reduction occurs; at pH 7, 25% occurs; and at pH 9, 50% occurs. Relatively an increased removal of Zinc was observed in the fi rst day of the experiment by Bacillus sp. The metal bioaccumulative potential of the selected isolates may have possible applications in the removal and recovery of zinc from industrial ef fluents.
Resumo:
A novel Acinetobacter sp. BTJR-IO isolated from highly acidic (pH 2.5-4.5) rubber latex centrifugation effluent with high COD (22000 rng/L) and BOD (5000 rng/L). This strain could effect 39.5% COD reduction on free cell inoculation of effluent without incorporation of additional nutrients after 8 days. CalciLnn alginate irrmobilized cells showed 16.4% and 25% COD reduction after 6 hra, without aeration and after 1 hr. with mild aeration under batch process respectively. Whereas 44.0% COD reduction could be achieved after 6 hrs. on continuous treatment in a packed bed reactor with mild aeration. Further, even after 3 cycles 37% COD reduction was recorded with continuous treatment
Resumo:
Pathogenic microorganisms such as Bacillus cereus, Listeria Monocytogenes and Staphylococcus sp have caused serious diseases, and consequently contributed to considerable economic loss in the food and agricultural industries. Antibiotics have been practically used to treat these pathogens since penicillin G was discovered more than half a century ago. Many different types of antibiotics have been discovered or synthesized to control pathogenic microorganisms. Repetitive use and misuse of antibiotics by the agricultural and pharmaceutical industries have caused the emergence of multidrug-resistant microorganisms, even to the strongest antibiotics currently available; therefore, the rapid development of more effective antimicrobial compounds is required to keep pace with demand. Bacteria were isolated from marine water and sediment samples collected from various locations off the coast of Cochin and salt pans of Tuticorin using pour plate technique. One hundred and twelve isolates were obtained. Seventeen isolates exhibiting antimicrobial activity were segregated after primary screening. The secondary screening which was aimed at selection of bacteria that produce proteinaceous inhibitory compounds, helped to select five strains viz. BTFK101, BTHT8, BTKM4, BTEK16 and BTSB22. The five isolates inhibited the growth of six Gram positive test organisms viz. B. cereus, B. circulans, B. coagulans, B. pumilus, Staphylococcus aureus and Clostridium perfringens. After quantitative estimation of the bacteriocin production, the two strains BTFK101 and BTHT8 were selected for further study.