912 resultados para PRISMATIC SLIP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Keeping exotic plant pests out of our country relies on good border control or quarantine. However with increasing globalization and mobilization some things slip through. Then the back up systems become important. This can include an expensive form of surveillance that purposively targets particular pests. A much wider net is provided by general surveillance, which is assimilated into everyday activities, like farmers checking the health of their crops. In fact farmers and even home gardeners have provided a front line warning system for some pests (eg European wasp) that could otherwise have wreaked havoc. Mathematics is used to model how surveillance works in various situations. Within this virtual world we can play with various surveillance and management strategies to "see" how they would work, or how to make them work better. One of our greatest challenges is estimating some of the input parameters : because the pest hasn't been here before, it's hard to predict how well it might behave: establishing, spreading, and what types of symptoms it might express. So we rely on experts to help us with this. This talk will look at the mathematical, psychological and logical challenges of helping experts to quantify what they think. We show how the subjective Bayesian approach is useful for capturing expert uncertainty, ultimately providing a more complete picture of what they think... And what they don't!

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The early warning based on real-time prediction of rain-induced instability of natural residual slopes helps to minimise human casualties due to such slope failures. Slope instability prediction is complicated, as it is influenced by many factors, including soil properties, soil behaviour, slope geometry, and the location and size of deep cracks in the slope. These deep cracks can facilitate rainwater infiltration into the deep soil layers and reduce the unsaturated shear strength of residual soil. Subsequently, it can form a slip surface, triggering a landslide even in partially saturated soil slopes. Although past research has shown the effects of surface-cracks on soil stability, research examining the influence of deep-cracks on soil stability is very limited. This study aimed to develop methodologies for predicting the real-time rain-induced instability of natural residual soil slopes with deep cracks. The results can be used to warn against potential rain-induced slope failures. The literature review conducted on rain induced slope instability of unsaturated residual soil associated with soil crack, reveals that only limited studies have been done in the following areas related to this topic: - Methods for detecting deep cracks in residual soil slopes. - Practical application of unsaturated soil theory in slope stability analysis. - Mechanistic methods for real-time prediction of rain induced residual soil slope instability in critical slopes with deep cracks. Two natural residual soil slopes at Jombok Village, Ngantang City, Indonesia, which are located near a residential area, were investigated to obtain the parameters required for the stability analysis of the slope. A survey first identified all related field geometrical information including slope, roads, rivers, buildings, and boundaries of the slope. Second, the electrical resistivity tomography (ERT) method was used on the slope to identify the location and geometrical characteristics of deep cracks. The two ERT array models employed in this research are: Dipole-dipole and Azimuthal. Next, bore-hole tests were conducted at different locations in the slope to identify soil layers and to collect undisturbed soil samples for laboratory measurement of the soil parameters required for the stability analysis. At the same bore hole locations, Standard Penetration Test (SPT) was undertaken. Undisturbed soil samples taken from the bore-holes were tested in a laboratory to determine the variation of the following soil properties with the depth: - Classification and physical properties such as grain size distribution, atterberg limits, water content, dry density and specific gravity. - Saturated and unsaturated shear strength properties using direct shear apparatus. - Soil water characteristic curves (SWCC) using filter paper method. - Saturated hydraulic conductivity. The following three methods were used to detect and simulate the location and orientation of cracks in the investigated slope: (1) The electrical resistivity distribution of sub-soil obtained from ERT. (2) The profile of classification and physical properties of the soil, based on laboratory testing of soil samples collected from bore-holes and visual observations of the cracks on the slope surface. (3) The results of stress distribution obtained from 2D dynamic analysis of the slope using QUAKE/W software, together with the laboratory measured soil parameters and earthquake records of the area. It was assumed that the deep crack in the slope under investigation was generated by earthquakes. A good agreement was obtained when comparing the location and the orientation of the cracks detected by Method-1 and Method-2. However, the simulated cracks in Method-3 were not in good agreement with the output of Method-1 and Method-2. This may have been due to the material properties used and the assumptions made, for the analysis. From Method-1 and Method-2, it can be concluded that the ERT method can be used to detect the location and orientation of a crack in a soil slope, when the ERT is conducted in very dry or very wet soil conditions. In this study, the cracks detected by the ERT were used for stability analysis of the slope. The stability of the slope was determined using the factor of safety (FOS) of a critical slip surface obtained by SLOPE/W using the limit equilibrium method. Pore-water pressure values for the stability analysis were obtained by coupling the transient seepage analysis of the slope using finite element based software, called SEEP/W. A parametric study conducted on the stability of an investigated slope revealed that the existence of deep cracks and their location in the soil slope are critical for its stability. The following two steps are proposed to predict the rain-induced instability of a residual soil slope with cracks. (a) Step-1: The transient stability analysis of the slope is conducted from the date of the investigation (initial conditions are based on the investigation) to the preferred date (current date), using measured rainfall data. Then, the stability analyses are continued for the next 12 months using the predicted annual rainfall that will be based on the previous five years rainfall data for the area. (b) Step-2: The stability of the slope is calculated in real-time using real-time measured rainfall. In this calculation, rainfall is predicted for the next hour or 24 hours and the stability of the slope is calculated one hour or 24 hours in advance using real time rainfall data. If Step-1 analysis shows critical stability for the forthcoming year, it is recommended that Step-2 be used for more accurate warning against the future failure of the slope. In this research, the results of the application of the Step-1 on an investigated slope (Slope-1) showed that its stability was not approaching a critical value for year 2012 (until 31st December 2012) and therefore, the application of Step-2 was not necessary for the year 2012. A case study (Slope-2) was used to verify the applicability of the complete proposed predictive method. A landslide event at Slope-2 occurred on 31st October 2010. The transient seepage and stability analyses of the slope using data obtained from field tests such as Bore-hole, SPT, ERT and Laboratory tests, were conducted on 12th June 2010 following the Step-1 and found that the slope in critical condition on that current date. It was then showing that the application of the Step-2 could have predicted this failure by giving sufficient warning time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gaudefroyite Ca4Mn3+3-x(BO3)3(CO3)(O,OH)3 is an unusual mineral containing both borate and carbonate groups and is found in the oxidation zones of manganese minerals, and it is black in color. Vibrational spectroscopy has been used to explore the molecular structure of gaudefroyite. Gaudefroyite crystals are short dipyramidal or prismatic with prominent pyramidal terminations, to 5 cm. Two very sharp Raman bands at 927 and 1076 cm-1are assigned to trigonal borate and carbonate respectively. Broad Raman bands at 1194, 1219 and 1281 cm-1 are attributed to BOH in-plane bending modes. Raman bands at 649 and 670 cm-1 are assigned to the bending modes of trigonal and tetrahedral boron. Infrared spectroscopy supports these band assignments. Raman bands in the OH stretching region are of a low intensity. The combination of Raman and infrared spectroscopy enables the assessment of the molecular structure of gaudefroyite to be made.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As teacher/researchers interested in the pursuit of socially-just outcomes in early childhood education, the form and function of language occupies a special position in our work. We believe that mastering a range of literacy competences includes not only the technical skills for learning, but also the resources for viewing and constructing the world (Freire and Macdeo, 1987). Rather than seeing knowledge about language as the accumulation of technical skills alone, the viewpoint to which we subscribe treats knowledge about language as a dialectic that evolves from, is situated in, and contributes to a social arena (Halliday, 1978). We do not shy away from this position just because children are in the early years of schooling. In ‘Playing with Grammar’, we focus on the Foundation to Year 2 grouping, in line with the Australian Curriculum, Assessment and Reporting Authority’s (hereafter ACARA) advice on the ‘nature of learners’ (ACARA, 2013). With our focus on the early years of schooling comes our acknowledgement of the importance and complexity of play. At a time where accountability in education has moved many teachers to a sense of urgency to prove language and literacy achievement (Genishi and Dyson, 2009), we encourage space to revisit what we know about literature choices and learning experiences and bring these together to facilitate language learning. We can neither ignore, nor overemphasise, the importance of play for the development of language through: the opportunities presented for creative use and practice; social interactions for real purposes; and, identifying and solving problems in the lives of young children (Marsh and Hallet, 2008). We argue that by engaging young children in opportunities to play with language we are ultimately empowering them to be active in their language learning and in the process fostering a love of language and the intricacies it holds. Our goal in this publication is to provide a range of highly practical strategies for scaffolding young children through some of the Content Descriptions from the Australian Curriculum English Version 5.0, hereafter AC:E V5.0 (ACARA, 2013). This recently released curriculum offers a new theoretical approach to building children’s knowledge about language. The AC:E V5.0 uses selected traditional terms through an approach developed in systemic functional linguistics (see Halliday and Matthiessen, 2004) to highlight the dynamic forms and functions of multimodal language in texts. For example, the following statement, taken from the ‘Language: Knowing about the English language’ strand states: English uses standard grammatical terminology within a contextual framework, in which language choices are seen to vary according to the topics at hand, the nature and proximity of the relationships between the language users, and the modalities or channels of communication available (ACARA, 2013). Put simply, traditional grammar terms are used within a functional framework made up of field, tenor, and mode. An understanding of genre is noted with the reference to a ‘contextual framework’. The ‘topics at hand’ concern the field or subject matter of the text. The ‘relationships between the language users’ is a description of tenor. There is reference to ‘modalities’, such as spoken, written or visual text. We posit that this innovative approach is necessary for working with contemporary multimodal and cross-cultural texts (see Exley and Mills, 2012). We believe there is enormous power in using literature to expose children to the richness of language and in turn develop language and literacy skills. Taking time to look at language patterns within actual literature is a pathway to ‘…capture interest, stir the imagination and absorb the [child]’ into the world of language and literacy (Saxby, 1993, p. 55). In the following three sections, we have tried to remain faithful to our interpretation of the AC:E V5.0 Content Descriptions without giving an exhaustive explanation of the grammatical terms. Other excellent tomes, such as Derewianka (2011), Humphrey, Droga and Feez (2012), and Rossbridge and Rushton (2011) provide these more comprehensive explanations as does the AC:E V5.0 Glossary. We’ve reproduced some of the AC:E V5.0 glossary at the end of this publication. Our focus is on the structure and unfolding of the learning experiences. We outline strategies for working with children in Foundation, Year 1 and Year 2 by providing some demonstration learning experiences based on texts we’ve selected, but maintain that the affordances of these strategies will only be realised when teaching and learning is purposively tied to authentic projects in local contexts. We strongly encourage you not to use only the resource texts we’ve selected, but to capitalise upon your skill for identifying the language features in the texts you and the children are studying and adapt some of the strategies we have outlined. Each learning experience is connected to one of the Content Descriptions from the AC:E V5.0 and contains an experience specific purpose, a suggested resource text and a sequence for the experience that always commences with an orientation to text followed by an examination of a particular grammatical resource. We expect that each of these learning experiences will take a couple if not a few teaching episodes to work through, especially if children are meeting a concept for the first time. We hope you use as much, or as little, of each experience as is needed. Our plans allow for focused discussion, shared exploration and opportunities to revisit the same text for the purpose of enhancing meaning making. We do not want the teaching of grammar to slip into a crisis of irrelevance or to be seen as a series of worksheet drills with finite answers. Strategies for effective practice, however, have much portability. We are both very keen to hear from teachers who are adopting and adapting these learning experiences in their classrooms. Please email us on b.exley@qut.edu.au or lkervin@uow.edu.au. We’d love to continue the conversation with you over time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geoscientists are confronted with the challenge of assessing nonlinear phenomena that result from multiphysics coupling across multiple scales from the quantum level to the scale of the earth and from femtoseconds to the 4.5 Ga of history of our planet. We neglect in this review electromagnetic modelling of the processes in the Earth’s core, and focus on four types of couplings that underpin fundamental instabilities in the Earth. These are thermal (T), hydraulic (H), mechanical (M) and chemical (C) processes which are driven and controlled by the transfer of heat to the Earth’s surface. Instabilities appear as faults, folds, compaction bands, shear/fault zones, plate boundaries and convective patterns. Convective patterns emerge from buoyancy overcoming viscous drag at a critical Rayleigh number. All other processes emerge from non-conservative thermodynamic forces with a critical critical dissipative source term, which can be characterised by the modified Gruntfest number Gr. These dissipative processes reach a quasi-steady state when, at maximum dissipation, THMC diffusion (Fourier, Darcy, Biot, Fick) balance the source term. The emerging steady state dissipative patterns are defined by the respective diffusion length scales. These length scales provide a fundamental thermodynamic yardstick for measuring instabilities in the Earth. The implementation of a fully coupled THMC multiscale theoretical framework into an applied workflow is still in its early stages. This is largely owing to the four fundamentally different lengths of the THMC diffusion yardsticks spanning micro-metre to tens of kilometres compounded by the additional necessity to consider microstructure information in the formulation of enriched continua for THMC feedback simulations (i.e., micro-structure enriched continuum formulation). Another challenge is to consider the important factor time which implies that the geomaterial often is very far away from initial yield and flowing on a time scale that cannot be accessed in the laboratory. This leads to the requirement of adopting a thermodynamic framework in conjunction with flow theories of plasticity. This framework allows, unlike consistency plasticity, the description of both solid mechanical and fluid dynamic instabilities. In the applications we show the similarity of THMC feedback patterns across scales such as brittle and ductile folds and faults. A particular interesting case is discussed in detail, where out of the fluid dynamic solution, ductile compaction bands appear which are akin and can be confused with their brittle siblings. The main difference is that they require the factor time and also a much lower driving forces to emerge. These low stress solutions cannot be obtained on short laboratory time scales and they are therefore much more likely to appear in nature than in the laboratory. We finish with a multiscale description of a seminal structure in the Swiss Alps, the Glarus thrust, which puzzled geologists for more than 100 years. Along the Glarus thrust, a km-scale package of rocks (nappe) has been pushed 40 km over its footwall as a solid rock body. The thrust itself is a m-wide ductile shear zone, while in turn the centre of the thrust shows a mm-cm wide central slip zone experiencing periodic extreme deformation akin to a stick-slip event. The m-wide creeping zone is consistent with the THM feedback length scale of solid mechanics, while the ultralocalised central slip zones is most likely a fluid dynamic instability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone is characterized with an optimized combination of high stiffness and toughness. The understanding of bone nanomechanics is critical to the development of new artificial biological materials with unique properties. In this work, the mechanical characteristics of the interfaces between osteopontin (OPN, a noncollagenous protein in extrafibrillar protein matrix) and hydroxyapatite (HA, a mineral nanoplatelet in mineralized collagen fibrils) were investigated using molecular dynamics method. We found that the interfacial mechanical behaviour is governed by the electrostatic attraction between acidic amino acid residues in OPN and calcium in HA. Higher energy dissipation is associated with the OPN peptides with a higher number of acidic amino acid residues. When loading in the interface direction, new bonds between some acidic residues and HA surface are formed, resulting in a stick-slip type motion of OPN peptide on the HA surface and high interfacial energy dissipation. The formation of new bonds during loading is considered to be a key mechanism responsible for high fracture resistance observed in bone and other biological materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: In this work, tension, impact, bend and fatigue tests were conducted in an AM60 magnesium alloy. The effects of environmental temperature and loading rates on impact and tension behavior of the alloy were also investigated. Design/methodology/approach: The tests were conducted using an Instron universal testing machine. The loading speed was changed from 1 mm/min to 300 mm/min to gain a better understanding of the effect of strain rate. To understand the failure behavior of this alloy at different environmental temperatures, Charpy impact test was conducted in a range of temperatures (-40~35°C). Plane strain fracture toughness (KIC) was evaluated using compact tension (CT) specimen. To gain a better understanding of the failure mechanisms, all fracture surfaces were observed using scanning electron microscopy (SEM). In addition, fatigue behavior of this alloy was estimated using tension test under tension-tension condition at 30 Hz. The stress amplitude was selected in the range of 20~50 MPa to obtain the S-N curve. Findings: The tensile test indicated that the mechanical properties were not sensitive to the strain rates applied (3.3x10-4~0.1) and the plastic deformation was dominated by twining mediated slip. The impact energy is not sensitive to the environmental temperature. The plane strain fracture toughness and fatigue limit were evaluated and the average values were 7.6 MPa.m1/2 and 25 MPa, respectively. Practical implications: Tested materials AM60 Mg alloy can be applied among others in automotive industry aerospace, communication and computer industry. Originality/value: Many investigations have been conducted to develop new Mg alloys with improved stiffness and ductility. On the other hand, relatively less attention has been paid to the failure mechanisms of Mg alloys, such as brittle fracture and fatigue, subjected to different environmental or loading conditions. In this work, tension, impact, bend and fatigue tests were conducted in an AM60 magnesium alloy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light of Extinction presents a diverse series of views into the complex antics of a semi-autonomous gaggle of robotic actants. Audiences initially enter into the 'backend' of the experience to be rudely confronted with the raw, messy operations of a horde of object-manipulating robotic forms. Seen through viewing apertures these ‘things’ deny any opportunity to grasp their imagined order. Audiences then flow on into the 'front end' of the work where now, seen through another aperture, the very same forms seemingly coordinate a stunning deep-field choreography, floating lusciously within inky landscapes of media, noise and embodied sound. As one series of conceptions slip into extinction, so others flow on in. The idea of the 'extinction of human experience' expresses a projected fear for that which will disappear when biodiverse worlds have descended into an era of permanent darkness. ‘Light Of Extinction' re-positions this anthropomorphic lament in order to suggest a more rounded acknowledgement of what might still remain - suggesting the previously unacknowledged power and place of autonomous, synthetic creation. Momentary disbelief gives way to a relieving celebration of the imagined birth of ‘things’ – without need for staples such as conventional light or the harmonious lullabies of long-extinguished sounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this Letter a hydrodynamic theory of liquid slippage on a solid substrate near a moving contact line is proposed. A family of spatially varying slip lengths in the Navier slip law recovers the results of past formulations for slip in continuum theories and molecular dynamics simulations and is consistent with well-established experimental observations of complete wetting. This formulation gives a general approach for continuum hydrodynamic theories. New fluid flow behaviors are also predicted yet to be seen in experiment. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This new volume, Exploring with Grammar in the Primary Years (Exley, Kevin & Mantei, 2014), follows on from Playing with Grammar in the Early Years (Exley & Kervin, 2013). We extend our thanks to the ALEA membership for their take up of the first volume and the vibrant conversations around our first attempt at developing a pedagogy for the teaching of grammar in the early years. Your engagement at locally held ALEA events has motivated us to complete this second volume and reassert our interest in the pursuit of socially-just outcomes in the primary years. As noted in Exley and Kervin (2013), we believe that mastering a range of literacy competences includes not only the technical skills for learning, but also the resources for viewing and constructing the world (Freire and Macdeo, 1987). Rather than seeing knowledge about language as the accumulation of technical skills alone, the viewpoint to which we subscribe treats knowledge about language as a dialectic that evolves from, is situated in, and contributes to active participation within a social arena (Halliday, 1978). We acknowledge that to explore is to engage in processes of discovery as we look closely and examine the opportunities before us. As such, we draw on Janks’ (2000; 2014) critical literacy theory to underpin many of the learning experiences in this text. Janks (2000) argues that effective participation in society requires knowledge about how the power of language promotes views, beliefs and values of certain groups to the exclusion of others. Powerful language users can identify not only how readers are positioned by these views, but also the ways these views are conveyed through the design of the text, that is, the combination of vocabulary, syntax, image, movement and sound. Similarly, powerful designers of texts can make careful modal choices in written and visual design to promote certain perspectives that position readers and viewers in new ways to consider more diverse points of view. As the title of our text suggests, our activities are designed to support learners in exploring the design of texts to achieve certain purposes and to consider the potential for the sharing of their own views through text production. In Exploring with Grammar in the Primary Years, we focus on the Year 3 to Year 6 grouping in line with the Australian Curriculum, Assessment and Reporting Authority’s (hereafter ACARA) advice on the ‘nature of learners’ (ACARA, 2014). Our goal in this publication is to provide a range of highly practical strategies for scaffolding students’ learning through some of the Content Descriptions from the Australian Curriculum: English Version 7.2, hereafter AC:E (ACARA, 2014). We continue to express our belief in the power of using whole texts from a range of authentic sources including high quality children’s literature, the internet, and examples of community-based texts to expose students to the richness of language. Taking time to look at language patterns within actual texts is a pathway to ‘…capture interest, stir the imagination and absorb the [child]’ into the world of language and literacy (Saxby, 1993, p. 55). It is our intention to be more overt this time and send a stronger message that our learning experiences are simply ‘sample’ activities rather than a teachers’ workbook or a program of study to be followed. We’re hoping that teachers and students will continue to explore their bookshelves, the internet and their community for texts that provide powerful opportunities to engage with language-based learning experiences. In the following three sections, we have tried to remain faithful to our interpretation of the AC:E Content Descriptions without giving an exhaustive explanation of the grammatical terms. This recently released curriculum offers a new theoretical approach to building students’ knowledge about language. The AC:E uses selected traditional terms through an approach developed in systemic functional linguistics (see Halliday and Matthiessen, 2004) to highlight the dynamic forms and functions of multimodal language in texts. For example, the following statement, taken from the ‘Language: Knowing about the English language’ strand states: English uses standard grammatical terminology within a contextual framework, in which language choices are seen to vary according to the topics at hand, the nature and proximity of the relationships between the language users, and the modalities or channels of communication available (ACARA, 2014). Put simply, traditional grammar terms are used within a functional framework made up of field, tenor, and mode. An understanding of genre is noted with the reference to a ‘contextual framework’. The ‘topics at hand’ concern the field or subject matter of the text. The ‘relationships between the language users’ is a description of tenor. There is reference to ‘modalities’, such as spoken, written or visual text. We posit that this innovative approach is necessary for working with contemporary multimodal and cross-cultural texts (see Exley & Mills, 2012). Other excellent tomes, such as Derewianka (2011), Humphrey, Droga and Feez (2012), and Rossbridge and Rushton (2011) provide more comprehensive explanations of this unique metalanguage, as does the AC:E Glossary. We’ve reproduced some of the AC:E Glossary at the end of this publication. We’ve also kept the same layout for our learning experiences, ensuring that our teacher notes are not only succinct but also prudent in their placement. Each learning experience is connected to a Content Description from the AC:E and contains an experience with an identified purpose, suggested resource text and a possible sequence for the experience that always commences with an orientation to text followed by an examination of a particular grammatical resource. Our plans allow for focused discussion, shared exploration and opportunities to revisit the same text for the purpose of enhancing meaning making. Some learning experiences finish with deconstruction of a stimulus text while others invite students to engage in the design of new texts. We encourage you to look for opportunities in your own classrooms to move from text deconstruction to text design. In this way, students can express not only their emerging grammatical understandings, but also the ways they might position readers or viewers through the creation of their own texts. We expect that each of these learning experiences will vary in the time taken. Some may indeed take a couple if not a few teaching episodes to work through, especially if students are meeting a concept or a pedagogical strategy for the first time. We hope you use as much, or as little, of each experience as is needed for your students. We do not want the teaching of grammar to slip into a crisis of irrelevance or to be seen as a series of worksheet drills with finite answers. We firmly believe that strategies for effective deconstruction and design practice, however, have much portability. We three are very keen to hear from teachers who are adopting and adapting these learning experiences in their classrooms. Please email us on b.exley@qut.edu.au, lkervin@uow.edu.au or jessicam@ouw.edu.au. We’d love to continue the conversation with you over time. Beryl Exley, Lisa Kervin & Jessica Mantei

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Do you know how to drive a train? If you don’t you probably believe that you have a fair idea of what it’s all about. Forget what you know, or think you know. Trains are heavy and fast but they feel and handle like driving on ice so they take a long time to stop. The braking distances for a typical piece of track are unlike anything you will have experienced before. With that in mind, imagine you were driving with a bit of dew, or grease, or millipede over the track. You would lose traction and slip everywhere. To avoid this, you would need a compensatory driving strategy. You could drive more slowly, or brake sooner, or change how you brake. Your experience and intuition would lead the way. Folks, this is why it’s called “driving by the seat of your pants”...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extreme diversity of conditions acting on railways necessitates a variety of experimental approaches to study the critical wear mechanisms that present themselves at the contact interface. This work investigates the effects of contact pressure and geometry in rolling-contact wear tests by using discs with different radii of curvature to simulate the varying contact conditions that may be typically found in the field. It is commonly adapted to line contact interface as it has constant contact pressure. But practical scenario of the rail wheel interface, the contact area increase and contact pressure change as tracks worn off. The tests were conducted without any significant amount of traction, but micro slip was still observed due to contact deformation. Moreover, variation of contact pressure was observed due to contact patch elongation and diameter reduction. Rolling contact fatigue, adhesive and sliding wear were observed on the curved contact interface. The development of different wear regimes and material removal phenomena were analysed using microscopic images in order to broaden the understanding of the wear mechanisms occurring in the rail-wheel contact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human genome project was a grand scientific enterprise which attracted both hyperbole and ridicule alike. The project was lauded as “the moon shot of the life sciences”, the “holy grail of man”, “the code of codes”, and “the book of life”. Such rhetoric has also received scorn. President George Bush senior managed to deflate the pretensions of the project with the accidental slip that it was the “human gnome initiative”. In The Sequence, Kevin Davies seeks to go beyond such metaphors, and provide a candid and honest account of the race of the human genome project. The author is indebted to the authoritative book The Gene Wars, which considered the early struggles over the human genome project. Robert Cook-Deegan observes that there was initially much debate over whether there should be a Human Genome Project at all: The debate became one of “big” science versus “small” science. The reliance on systematic technology development and goal-directed gene-mapping efforts presaged a new style for biology, one that elicited excitement from those attracted to whiz-bang technologies but drew gasps of revulsion from those who aspired to cultivate biology on a more modest scale and with decentralized organisation. The battle was, among other things, over whose vision would control the budget and which scientific aesthetic would prevail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intervertebral disc (IVD) is a unique soft tissue structure which provides structural support and flexibility in the axial skeleton of vertebrates. From a structural perspective, the disc behaves somewhat like a thick walled pressure vessel, where the walls are comprised of a series of composite annular rings (lamellae). However, a prior study (Marchand and Ahmed, 1990) found a high proportion of circumferentially discontinuous lamellae in human lumbar IVDs. The presence of these discontinuities raises important structural questions, because discontinuous lamellae cannot withstand high nucleus pressures via the generation of circumferential (hoop) stress. A possible alternative mechanism may be that inter-lamellar cohesion allows shear stress transfer between adjacent annular layers. The aim of the present study was therefore to investigate the importance of inter-lamellar shear resistance in the intervertebral disc. This work found that inter-lamellar shear resistance has a strong influence on the compressive stiffness of the intervertebral disc, with a change in interface condition from tied (no slip) to frictionless (no shear resistance) reducing disc compressive stiffness by 40%. However, it appears that substantial inter-lamellar shear resistance is present in the bovine tail disc. Decreases in inter-lamellar shear resistance due to degradation of bridging collagenous or elastic fibre structures could therefore be an important part of the process of disc degeneration.