914 resultados para PORE-SIZE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tungsten carbide (WC) with controlled pore size distribution was synthesized using a novel “precursor reassembly” method. The precursor crystal was assembled by mixing ammonium metatungstate (AMT) and ammonium carbonate (AC) in distilled water, followed by hydrothermal treatment. The mesostructure, crystal phase, and amount of deposited graphitic carbon can be conveniently tuned by controlling carburizing atmosphere (CO or a CO/H2 mixture). Moreover, the influence of precursor preparation (AMT/AC mass ratio and hydrothermal temperature) on the materials was also investigated. The resultant materials with low carbon content were mesoporous WCs, which showed high specific surface areas (11.3-20.4 m2 g-1) and adjustable pore-size distributions (average pore size: 15.3-22.3 nm). A mechanism for the formation of WC with a controllable porous framework is proposed. Finally, cyclic voltammetry was used to investigate the inference of different mesoporous structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In constant, search for micro/mesoporous materials, gallium phosphates, have attracted continued interest due to the large pore size reported for some of these solids in comparison with analogous aluminum phosphates. However up to now, the porosity of gallium phosphates collapsed upon template removal or exposure to the ambient moisture. In the present work, we describe high-surface thermally stable mesoporous gallium phosphates synthesized from gallium propoxide and PCl3 and different templating agents such as amines (dipropylamine, piperidine and aminopiperidine) and quaternary ammonium salts (C16H33(CH3)3NBr and C16PyCl). These highly reactive precursors have so far not been used as gallium and phosphate sources for the synthesis of gallophosphates. Conceptually, our present synthetic procedure is based on the fast formation of gallium phosphate nanoparticles via the reaction of gallium propoxide with PCl3 and subsequent construction of the porous material with nanoparticles as building blocks. The organization of the gallophosphate nanoparticles in stable porous structures is effected by the templates. Different experimental procedures varying the molar composition of the sol-gel, pH and the pretreatment of gallium precursor were assayed, most of them leading to satisfactory materials in terms of thermal stability and porosity. In this way, a series of gallium phosphates with surface are above 200 m(2) g(-1), and narrow pore size from 3 to 6 nm and remarkable thermal stability (up to 550 degrees C) have been prepared. In some cases, the structure tends to show some periodicity and regularity as determined by XRD. The remarkable stability has allowed us to test the catalytic activity of gallophosphates for the aerobic oxidation of alkylaromatics with notable good results. Our report reopens the interest for gallophosphates in heterogeneous catalysis. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organic aerogels were synthesized by sol–gel polymerization of resorcinol (R) with formaldehyde (F) catalyzed by sodium carbonate (C) followed by vacuum drying. The influence of the resorcinol/sodium carbonate ratio (R/C) on the porous structure of the resultant aerogels was investigated. The nitrogen adsorption–desorption measurements show that the aerogels possess a well developed porous structure and mesoporosity was found to increase with increasing the R/C ratio. Carbon aerogels were obtained by carbonization of RF aerogels. The carbonization temperature impacts the microstructure of the aerogels by pore transformations during carbonization probably due to the formation of micropores and shrinkage of the gel structure. The results showed that a temperature of 1073 Kis more effective in the development of the pore structure of the gel. Activated carbon aerogels were obtained from the CO2 activation of carbon aerogels. Activation results in an increase in the number of both micropores and mesopores, indicative of pore creation in the structure of the carbon. Activation at higher temperatures results in a higher degree of burn off and increases the pore volume and the surface area remarkably without change of the basic porous structure, pore size, and pore size distribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Porous carbon aerogels are prepared by polycondensation of resorcinol and formaldehyde catalyzed by sodium carbonate followed by carbonization of the resultant aerogels in an inert atmosphere. Pore structure of carbon aerogels is adjusted by changing the molar ratio of resorcinol to catalyst during gel preparation and also pyrolysis under Ar and activation under CO2 atmosphere at different temperatures. The prepared carbons are used as active materials in fabrication of composite carbon electrodes. The electrochemical performance of the electrodes has been tested in a Li/O2 cell. Through the galvanostatic charge/discharge measurements, it is found that the cell performance (i.e. discharge capacity and discharge voltage) depends on the morphology of carbon and a combined effect of pore volume, pore size and surface area of carbon affects the storage capacity. A Li/O2 cell using the carbon with the largest pore volume (2.195cm3/g) and a wide pore size (14.23 nm) showed a specific capacity of 1290mAh g-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ethanol adsorption-desorption isotherms on well-organized mesoporous silica and titania films with hexagonal pores structure were studied by ellipsometric porosimetry. The mesopore volume Was calculated from the change of the effective refractive index at the end points of the isotherm. An improved Derjaguin-Broekhoff-de Boer (IDBdB) model for cylindrical pores is proposed for the determination of the pore size. In this model, the disjoining pressure isotherms were obtained by measuring the thickness of the ethanol film on a non-porous film with the same chemical composition. This approach eliminates uncertainties related to the application of the statistical film thickness determined via t-plots in previous versions of the DBdB model. The deviation in the surface tension of ethanol in the mesopores from that of a flat interface was described by the Tolman parameter in the Gibbs-Tolman-Koening-Buff equation. A positive value of the Tolman parameter of 0.2 nm was found from the fitting of the desorption branch of the isotherms to the experimental data obtained by Low Angle X-ray Diffraction (LA-XRD) and Transmission Electron Microscopy (TEM) measurements in the range of pore diameters between 2.1 and 8.3 nm. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of Al incorporation and pH adjustment during hydrolysis of the silica precursor on the thermal and structural stability of ordered microporous silica films with a 2D structure is presented. The structural stability of the films was determined from a combination of LA XRD/TEM data with porosity data obtained from ethanol adsorption isotherms. Thermogravimetric analysis and MR data were used to determine the template removal and the thermal stability. Stability of aluminium incorporated silica films has further been examined in several organic solvents with different polarity. A solvent with a higher polarity interacts more strongly with the films; the long-order structure disappeared after exposure to polar solvents. After exposure to non-polar solvents, the pore size uniformity was retained after 48 h. The samples with an Al/Si ratio of 0.007 showed the smallest d-spacing shift after exposure to hexane. The stability was further tested in the hydrogenation of phenylacetylene performed in a batch reactor over 1 wt.% Pd/Si(Al)O-2/Si (Al/Si = 0.007) films at 30 degrees C and 10 bar H-2 with hexane as solvent. No deactivation was observed in two subsequent hydrogenation runs. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of complex inorganic forms, based on naturally occurring scaffolds offers an exciting avenue for the construction of a new generation of ceramic-based bone substitute scaffolds. The following study reports an investigation into the architecture (porosity, pore size distribution, pore interconnectivity and permeability), mechanical properties and cytotoxic response of hydroxyapatite bone substitutes produced using synthetic polymer foam and natural marine sponge performs. Infiltration of polyurethane foam (60 pores/in2) using a high solid content (80wt %), low viscosity (0.126Pas) hydroxyapatite slurry yielded 84-91% porous replica scaffolds with pore sizes ranging from 50µm - 1000µm (average pore size 577µm), 99.99% pore interconnectivity and a permeability value of 46.4 x10-10m2. Infiltration of the natural marine sponge, Spongia agaricina, yielded scaffolds with 56- 61% porosity, with 40% of pores between 0-50µm, 60% of pores between 50-500µm (average pore size 349 µm), 99.9% pore interconnectivity and a permeability value of 16.8 x10-10m2. The average compressive strengths and compressive moduli of the natural polymer foam and marine sponge replicas were 2.46±1.43MPa/0.099±0.014GPa and 8.4±0.83MPa /0.16±0.016GPa respectively. Cytotoxic response proved encouraging for the HA Spongia agaricina scaffolds; after 7 days in culture medium the scaffolds exhibited endothelial cells (HUVEC and HDMEC) and osteoblast (MG63) attachment, proliferation on the scaffold surface and penetration into the pores. It is proposed that the use of Spongia agaricina as a precursor material allows for the reliable and repeatable production of ceramic-based 3-D tissue engineered scaffolds exhibiting the desired architectural and mechanical characteristics for use as a bone 3 scaffold material. Moreover, the Spongia agaricina scaffolds produced exhibit no adverse cytotoxic response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present here evidence for the observation of the magnetohydrodynamic (MHD) sausage modes in magnetic pores in the solar photosphere. Further evidence for the omnipresent nature of acoustic global modes is also found. The empirical decomposition method of wave analysis is used to identify the oscillations detected through a 4170 Å "blue continuum" filter observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument. Out of phase, periodic behavior in pore size and intensity is used as an indicator of the presence of magnetoacoustic sausage oscillations. Multiple signatures of the magnetoacoustic sausage mode are found in a number of pores. The periods range from as short as 30 s up to 450 s. A number of the magnetoacoustic sausage mode oscillations found have periods of 3 and 5 minutes, similar to the acoustic global modes of the solar interior. It is proposed that these global oscillations could be the driver of the sausage-type magnetoacoustic MHD wave modes in pores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In natural environments such as anaerobic digesters, bacteria are frequently subjected to the stress of nutrient fluxes because of the continual changes in the flow of nutrients, and to survive, they must be capable of adapting readily to nutrient changes. In this study, the metabolic activities of Escherichia coli, Salmonella typhimurium, Yersinia enterocolitica, Listeria monocytogenes, and Campylobacter jejuni were studied within culture bags (Versapor-200 filters, 0.22-mu m pore size) in laboratory anaerobic digesters. The metabolic activity of these bacteria was indicated by their adenylate energy charge (EC) ratios and their ability to incorporate [H-3]thymidine, which was related to the respective changes in viable numbers within the culture bags during anaerobic digestion. Fluctuations in the adenylate EC ratios, the uptake of [H-3]thymidine, and the viable numbers of E. coli, S. typhimurium, Y. enterocolitica, and L. monocytogenes cells were probably due to constant changes in the amount of available nutrients within the anaerobic digesters. The viability of S. typhimurium increased quickly after a fresh supply of nutrients was added to the system as indicated by the uptake of [H-3]thymidine and an increase in the adenylate EC ratios. The viable numbers of E. coli, S. typhimurium, Y. enterocolitica, and L. monocytogenes organisms declined rapidly from 10(7) to 10(8) CFU/ml to 10(3) to 10(4) CFU/ml and remained at this level for an indefinite period. The decimal reduction time calculated during the period of exponential decline ranged from 0.8 to 1.2 days for these bacteria. C. jejuni had the greatest mean decimal reduction time value (3.6 days). This bacterium had adenylate EC ratios of less than 0.5 during anaerobic digestion, although the adenylate nucleotide concentrations in the cells were much greater than those in the other enteric cells. The results show that the enteric bacteria investigated probably exist in transient states between different stages of growth because of fluctuating nutrient levels during anaerobic digestion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MIL-101, a chromium-based metal-organic framework, is known for its very large pore size, large surface area and good stability. However, applications of this material in catalysis are still limited. 5-Hydroxymethylfurfural (HMF) has been considered a renewable chemical platform for the production of liquid fuels and fine chemicals. Phosphotungstic acid, H3PW12O40 (PTA), encapsulated in MIL-101 is evaluated as a potential catalyst for the selective dehydration of fructose and glucose to 5-hydroxymethylfurfural. The results demonstrate that PTA/MIL-101 is effective for HMF production from fructose in DMSO and can be reused. This is the first example of the application of a metal-organic framework in carbohydrate dehydration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Porous titanium samples were manufactured using the 3D printing and sintering method in order to determine the effects of final sintering temperature on morphology and mechanical properties. Cylindrical samples were printed and split into groups according to a final sintering temperature (FST). Irregular geometry samples were also printed and split into groups according to their FST. The cylindrical samples were used to determine part shrinkage, in compressive tests to provide stress-strain data, in microCT scans to provide internal morphology data and for optical microscopy to determine surface morphology. All of the samples were used in microhardness testing to establish the hardness. Below 1100 C FST, shrinkage was in the region of 20% but increased to approximately 30% by a FST of 1300 C. Porosity varied from a maximum of approximately 65% at the surface to the region of 30% internally. Between 97 and 99% of the internal porosity is interconnected. Average pore size varied between 24 µm at the surface and 19 µm internally. Sample hardness increased to in excess of 300 HV0.05 with increasing FST while samples with an FST of below 1250 C produced an elastic-brittle stress/strain curve and samples above this displayed elastic-plastic behaviour. Yield strength increased significantly through the range of sintering temperatures while the Young's modulus remained fairly consistent. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Porous poly-L-lactide acid (PLA) scaffolds are prepared using polymer sintering and porogen leaching method. Different weight fractions of the Hydroxyapatite (HA) are added to the PLA to control the acidity and degradation rate. The three dimensional morphology and surface porosity are tested using micro CT, optical microscopy and scanning electron microscopy (SEM). Results indicate that the surface porosity does not change by addition of HA. The micro Ct examinations show slight decrease in the pore size and increase in wall thickness accompanied with reduced anisotropy for the scaffolds containing HA. SEM micrographs show detectable interconnected pores for the scaffold with pure PLA. Addition of the HA results in agglomeration of the HA which blocks some of the pores. Compression tests of the scaffold identify three stages in the stress-strain curve. The addition of HA adversely affects the modulus of the scaffold at the first stage, but this was reversed for the second and third stages of the compression. The results of these tests are compared with the cellular material model. The manufactured scaffold have acceptable properties for a scaffold, however improvement to the mixing of the phases of PLA and HA is required to achieve better integrity of the composite scaffolds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Porous poly(L-lactic acid) (PLA) scaffolds of 85 per cent and 90 per cent porosity are prepared using polymer sintering and porogen leaching method. Different weight fractions of 10 per cent, 30 per cent, and 50 per cent of hydroxyapatite (HA) are added to the PLA to control the acidity and degradation rate. The three-dimensional (3D) morphology and surface porosity are tested using micro-computer tomography (micro-CT), optical microscopy, and scanning electron microscopy (SEM). Results indicate that the surface porosity does not change on the addition of HA. The micro-CT examinations show a slight decrease in the pore size and increase in the wall thickness accompanied by reduced anisotropy for the scaffolds containing HA. Scanning electron micrographs show detectable interconnected pores for the scaffold with pure PLA. Addition of the HA results in agglomeration of the HA particles and reduced leaching of the porogen. Compression tests of the scaffold identify three stages in the stress-strain curve. The addition of HA results in a reduction in the modulus of the scaffold at the first stage of elastic bending of the wall, but this is reversed for the second and third stages of collapse of the wall and densification in the compression tests. In the scaffolds with 85 per cent porosity, the addition of a high percentage of HA could result in 70 per cent decrease in stiffness in the first stage, 200 per cent increase in stiffness in the second stage, and 20 per cent increase in stiffness in the third stage. The results of these tests are compared with the Gibson cellular material model that is proposed for prediction of the behaviour of cellular material under compression. The pH and molecular weight changes are tracked for the scaffolds within a period of 35 days. The addition of HA keeps the pH in the alkaline region, which results in higher rate of degradation at an early period of observation, followed by a reduced rate of degradation later in the process. The final molecular weight is higher for the scaffolds with HA than for scaffolds of pure PLA. The manufactured scaffolds offer acceptable properties in terms of the pore size range and interconnectivity of the pores and porosity for non-load-bearing bone graft substitute; however, improvement to the mixing of the phases of PLA and HA is required to achieve better integrity of the composite scaffolds. © 2008 IMechE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A low cost supercritical CO foaming rig with a novel design has been used to prepare fully interconnected and highly porous biodegradable scaffolds with controllable pore size and structure that can promote cancellous bone regeneration. Porous polymer scaffolds have been produced by plasticising the polymer with high pressure CO and by the formation of a porous structure following the escape of CO from the polymer. Although, control over pore size and structure has been previously reported as difficult with this process, the current study shows that control is possible. The effects of processing parameters such as CO saturation pressure, time and temperature and depressurisation rate on the morphological properties, namely porosity, pore interconnectivity, pore size and wall thickness- of the scaffolds have been investigated. Poly(d,l)lactic acid was used as the biodegradable polymer. The surfaces and internal morphologies of the poly(d,l)lactic acid scaffolds were examined using optical microscope and micro computed tomography. Preosteoblast human bone cells were seeded on the porous scaffolds in vitro to assess cell attachment and viability. The scaffolds showed a good support for cell attachment, and maintained cell viability throughout 7 days in culture. This study demonstrated that the morphology of the porous structure can be controlled by varying the foaming conditions, allowing the porous scaffolds to be used in various tissue engineering applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young's moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.