946 resultados para POLYETHYLENE
Resumo:
Background: Polyethylene glycol (PEG) is often considered as the first-line treatment for functional constipation in children. Descurainia sophia (L.) Webb et Berth (D. sophia) is a safe recommended medicine in Iranian folk and Traditional Persian Medicine for the treatment of constipation. Objectives: To clinically compare D. sophia with PEG 4000 (without electrolyte) in pediatric constipation and to assess its efficacy and side effects. Patients and Methods: 120 patients aged 2 - 12 years with constipation for at least 3 months were included in an 8 weeks lasting randomized controlled trial within two parallel-groups. Children received either PEG, 0.4 g/kg/day, or D. sophia seeds, 2 grams (for children aged 2 - 4 years) and 3 grams (for those aged > 4 years) per day. Results: A total of 109 patients completed the study (56 in D. sophia and 53 in PEG group). At the end of the study, 36 (64.3%) patients in D. sophia group and 29 (54.7%) in PEG group were out of Rome III criteria (P = 0.205). Median weekly stool frequency in 0, 1, 2, 3 weeks of the treatment was found to be 2, 5, 5, 5 in D. sophia and 3, 4, 4, 5 in PEG group (P = 0.139, 0.076, 0.844, 0.294), respectively. The number of patients who suffered flatulence was less (5, 8.9%) in D. sophia group as compared to PEG group (6, 11.3%) at the end of the trial (P = 0.461). D. sophia taste was less tolerated. Conclusions: D. sophia is introduced as a cheap and available medication which can be applied as a safe alternative to conventional PEG in the management of pediatric chronic functional constipation.
Resumo:
A hafnocene catalyst combined with methylaluminoxane (MAO) has been used as catalytic complex for the preparation of a set of polyethylene homopolymers by in situ polymerization under homogenous conditions and of different nanocomposites with mesoporous SBA- 15 particles, the latter playing the dual role of catalyst support and nanofiller. Distinct immobilization approaches have been explored for obtainment of these nanocomposites. Moreover, catalytic features, thermal stability, melting and crystallization transitions and mechanical behavior have been evaluated for those materials.
Resumo:
We present a multiscale model bridging length and time scales from molecular to continuum levels with the objective of predicting the yield behavior of amorphous glassy polyethylene (PE). Constitutive pa- rameters are obtained from molecular dynamics (MD) simulations, decreasing the requirement for ad- hoc experiments. Consequently, we achieve: (1) the identification of multisurface yield functions; (2) the high strain rate involved in MD simulations is upscaled to continuum via quasi-static simulations. Validation demonstrates that the entire multisurface yield functions can be scaled to quasi-static rates where the yield stresses are possibly predicted by a proposed scaling law; (3) a hierarchical multiscale model is constructed to predict temperature and strain rate dependent yield strength of the PE.
Resumo:
This thesis aims at investigating the evolution of physico-chemical and electrical properties relevant to low-voltage power cables for nuclear application when subjected to typical nuclear power plant (NPP) environments i.e., to gamma radiation and high temperature. This research is part of the European Project Horizon 2020 TeaM Cables, which aims at providing a novel methodology for efficient and reliable NPP cable aging management to NPP operators. The analyzed samples consist of both coaxial and twisted pair cables with different polymeric compounds used as primary insulation. Insulating materials are based on the same silane cross-linked polyethylene matrix with different additives and fillers. In order to characterize the material response to the environmental stresses, various experimental techniques have been used. These characterizations range from the microscale chemical response e.g. by FTIR, OIT and DSC, to the macroscale electrical and mechanical behavior. A significant part of this Thesis is given to the correlation of the response to aging among the different measured properties. It has been shown that it could be possible to connect both the chemical and mechanical properties of the investigated XLPE cables with the electrical ones. In particular, the high-frequency dielectric response allows an effective monitoring of both the early periods of aging, controlled by the antioxidant consumption kinetics, and then the subsequent oxidation of the polymer matrix. Therefore, dielectric spectroscopy showed to be capable of assessing the LV cable aging state and, it might be used as an aging marker for cable diagnostic. The last part of the manuscript focuses on the building of a predictive modelling approach of LV cable conditions subjected to radio-chemical aging. It resulted into obtaining a lifetime curve which relates the aging factor to which the cable is subjected to, namely the dose rate, with the limit value of the considered electrical property (tanδ).
Resumo:
In food and beverage industry, packaging plays a crucial role in protecting food and beverages and maintaining their organoleptic properties. Their disposal, unfortunately, is still difficult, mainly because there is a lack of economically viable systems for separating composite and multilayer materials. It is therefore necessary not only to increase research in this area, but also to set up pilot plants and implement these technologies on an industrial scale. LCA (Life Cycle Assessment) can fulfil these purposes. It allows an assessment of the potential environmental impacts associated with a product, service or process. The objective of this thesis work is to analyze the environmental performance of six separation methods, designed for separating the polymeric from the aluminum fraction in multilayered packaging. The first four methods utilize the chemical dissolution technique using Biodiesel, Cyclohexane, 2-Methyltetrahydrofuran (2-MeTHF) and Cyclopentyl-methyl-ether (CPME) as solvents. The last two applied the mechanical delamination technique with surfactant-activated water, using Ammonium laurate and Triethanolamine laurate as surfactants, respectively. For all six methods, the LCA methodology was applied and the corresponding models were built with the GaBi software version 10.6.2.9, specifically for LCA analyses. Unfortunately, due to a lack of data, it was not possible to obtain the results of the dissolution methods with the solvents 2-MeTHF and CPME; for the other methods, however, the individual environmental performances were calculated. Results revealed that the methods with the best environmental performance are method 2, for dissolution methods, and method 5, for delamination methods. This result is confirmed both by the analysis of normalized and weighted results and by the analysis of 'original' results. An hotspots analysis was also conducted.
Resumo:
Antimony is a common catalyst in the synthesis of polyethylene terephthalate used for food-grade bottles manufacturing. However, antimony residues in final products are transferred to juices, soft drinks or water. The literature reports mentions of toxicity associated to antimony. In this work, a green, fast and direct method to quantify antimony, sulfur, iron and copper, in PET bottles by X-ray fluorescence spectrometry is presented. 2.4 to 11 mg Sb kg-1 were found in 20 samples analyzed. The coupling of the multielemental technique to chemometric treatment provided also the possibility to classify PET samples between bottle-grade PET/recycled PET blends by Fe content.
Resumo:
This research studied the effect of low density polyethylene packaging and storage temperature on the preservation of fresh-cut (minimally processed) cabbage. The cabbages, previously cooled to a temperature of 10 ºC, were selected, washed, cut in four parts (with the central stalk removed), sanitized, cut in strips, rinsed, put in the centrifuge, weighed and stored in plastic packaging of low density polyethylene (70 µm), and then stored in cold chambers at temperatures of 1 and 10 ºC for 20 days. The following aspects were evaluated: carbon dioxide, oxygen and ethylene in the internal atmosphere of the package as well as, pH, titratable acidity, total soluble solids, vitamin C, loss of fresh mass and the total soluble solids/acidity in the fresh-cut cabbage ratio. The experimental design was entirely casual, with three repetitions. The analysis parameters, except for the vitamin C, loss of fresh mass and ethylene, presented significant variation between the temperatures and days of storage. The cabbage stored at a temperature of 1 ºC presented a shelf life of around 15 days, significantly higher than that stored at 10 ºC. At this temperature, on the 8th day of storage, the product was completely decayed, unfit for commercialization or consumption.
Resumo:
The covering of the soil is an agricultural practice that intends to control the harmful herbs, to reduce the losses of water by evaporation of the soil, and to facilitate the harvest and the commercialization, once the product is cleaner and healthier. However, when the soil is covered important microclimatic parameters are also altered, and consequently the germination of seeds, the growth of roots, the absorption of water and nutrients, the metabolic activity of the plants and the carbohydrates storage. The current trial intended to evaluate the effect of soil covering with blue colored film on consumptive water-use in a lettuce crop (Lactuca sativa, L.). The experiment was carried out in a plastic greenhouse in Araras - São Paulo State, Brazil from March 3rd, 2001 to May 5th, 2001. The consumptive water-use was measured through two weighing lysimeter installed inside the greenhouse. Crop spacing was 0.25 m x 0.25 m and the color of the film above soil was blue. Leaf area index (IAF), was measured six times (7; 14; 21; 28; 35; 40 days after transplant) and the water-use efficiency (EU) was measured at the end. The experimental design was subdivided portions with two treatments, bare soil and covered soil. The average consumptive water-use was 4.17 mm day-1 to the bare soil treatment and 3.11 mm day-1 to the covered soil treatment. The final leaf area index was 25.23 to the bare soil treatment and 24.39 to the covered soil treatment, and there was no statistical difference between then.
Resumo:
Kohleria eriantha (Benth.) Hanst is a plant belonging to the family Gesneriaceae, with an underground organ, which is associated with vegetative reproduction. This organ is a rhizome, whose stem bears buds covered with modified leaves that store up starch. In small sections of this rhizome, containing six buds (1.5 to 2.0cm long), only one bud sprouted. The sprouted bud could be differentiated into two morphological pattern: aerial part or rhizome. Sprouting of the rhizome pattern occurred in sections kept on substrate with low water content (1mL of water), or lacking water, whereas sprouting of the aerial part pattern occurred in sections on substrate with high water content (12mL of water). Temperature at 20ºC also stimulated sprouting of the rhizome pattern, regardless of the water volume in the substrate. Sprouting of the rhizome pattern occurred still in sections on substrate to which polyethylene glycol 6000 (PEG) solution was added at the concentrations of 161.2, 235.2 and 340.0g/L, resulting in potentials of -3, -6 and -12 MPa, respectively. Sections kept on substrate with low water content (1 ml of water) showed a reduction in the dry matter content and high osmotic concentration in comparison with those on substrate with high water content. The results obtained revealed that forming of the rhizome pattern was influenced by water content and temperature. It is suggested that sprouting of the rhizome pattern was induced by the low water potential in the sections, when kept on substrate with low water content. Moreover, it was observed that the rhizome buds of Kohleria eriantha showed a high degree of plasticity.
Resumo:
cDNA arrays are a powerful tool for discovering gene expression patterns. Nylon arrays have the advantage that they can be re-used several times. A key issue in high throughput gene expression analysis is sensitivity. In the case of nylon arrays, signal detection can be affected by the plastic bags used to keep membranes humid. In this study, we evaluated the effect of five types of plastics on the radioactive transmittance, number of genes with a signal above the background, and data variability. A polyethylene plastic bag 69 μm thick had a strong shielding effect that blocked 68.7% of the radioactive signal. The shielding effect on transmittance decreased the number of detected genes and increased the data variability. Other plastics which were thinner gave better results. Although plastics made from polyvinylidene chloride, polyvinyl chloride (both 13 μm thick) and polyethylene (29 and 7 μm thick) showed different levels of transmittance, they all gave similarly good performances. Polyvinylidene chloride and polyethylene 29 mm thick were the plastics of choice because of their easy handling. For other types of plastics, it is advisable to run a simple check on their performance in order to obtain the maximum information from nylon cDNA arrays.
Resumo:
The objective of the work was to evaluate the effects of environment, recipients, and substrate compositions in passion fruit (Passiflora edulis Sims f. flavicarpa Deg.) seedlings biomass production in Pantanal region from September to November of 2006. Experimental trials were conducted in four protected environments, in two types of containers and three different substrate compositions. The environments were: A1 (greenhouse covered with low-density, 150-microns-thick polyethylene film), A2 (monofilament black screened with mesh for 50% of shade), A3 (aluminized screened with mesh for 50% of shade) and A4 (environment covered with straw of native coconut palm); the recipients were: polyethylene bags (R1) (15 x 25 cm) and polystyrene trays (R2) (with 72 cells). There substrates were: S1 (soil + organic compost + vermiculite, 1:1: 1 v/v), S2 (soil + organic compost + sawdust, 1:1: 1 v/v) and S3 (soil + organic compost + vermiculite + sawdust, 1:1: 1/2: 1/2 v/v). The experimental design was completely randomized statistical analysis in split-split-plot, with fifteen replications. The treatments in the plot were environments, in the subplots were pots, and subsubplots were substrates (4 x 2 x 3 = 24 treatments). Fresh and dry mass of aerial and root system parts were evaluated. Environments with screen showed better results for seedlings of yellow passion fruit biomass in polyethylene bags. Polyethylene bags promoted higher biomasses. The substrate with vermiculite showed better results for both types of containers. The substrate with a higher percentage of sawdust showed the worst result.
Resumo:
Shelled, roasted and salted cashew nut kernels were packaged in three different flexible materials (PP/PE= polypropylene / polyethylene; PETmet/PE= metallized polyethylene terephthalate / polyethylene; PET/Al/LDPE= polyethylene terephthalate / aluminum foil / low density polyethylene ), with different barrier properties. Kernels were stored for one year at 30° C and 80% relative humidity. Quantitative descriptive sensory analysis (QDA) were performed at the end of storage time. Descriptive terms obtained for kernels characterization were brown color, color uniformity and rugosity for appearance; toasted kernel, sweet, old and rancidity for odor; toasted kernel, sweet, old rancidity, salt and bitter for taste, crispness for texture. QDA showed that factors responsible for sensory quality decrease, after one year storage, were increase in old aroma and taste, increase in rancidity aroma and taste, decrease in roasted kernel aroma and taste, and decrease of crispness. Sensory quality decrease was higher in kernels packaged in PP/PE.
Resumo:
The present study aimed to compare the fluoride (F-) release pattern of a nanofilled resin-modified glass ionomer cement (GIC) (Ketac N100 - KN) with available GICs used in dental practice (resin-modified GIC - Vitremer - V; conventional GIC - Ketac Molar - KM) and a nanofilled resin composite (Filtek Supreme - RC). Discs of each material (n=6) were placed into 4 mL of deionized water in sealed polyethylene vials and shaken, for 15 days. F- release (μg F-/cm²) was measured each day using a fluoride-ion specific electrode. Cumulative F- release means were statistically analyzed by linear regression analysis. In order to analyze the differences among materials and the influence of time in the daily F- release, 2-way ANOVA test was performed (α=0.05). The linear fits between the cumulative F- release profiles of RC and KM and time were weak. KN and V presented a strong relationship between cumulative F- release and time. There were significant differences between the daily F- release overtime up to the third day only for GICs materials. The daily F- release means for RC were similar overtime. The results indicate that the F- release profile of the nanofilled resin-modified GIC is comparable to the resin-modified GIC.
Resumo:
This study evaluated the response of the subcutaneous connective tissue of BALB/c mice to root filling materials indicated for primary teeth: zinc oxide/eugenol cement (ZOE), Calen paste thickened with zinc oxide (Calen/ZO) and Sealapex sealer. The mice (n=102) received polyethylene tube implants with the materials, thereby forming 11 groups, as follows: I, II, III: Calen/ZO for 7, 21 and 63 days, respectively; IV, V, VI: Sealapex for 7, 21 and 63 days, respectively; VII, VIII, IX: ZOE for 7, 21 and 63 days, respectively; X and XI: empty tube for 7 and 21 days, respectively. The biopsied tissues were submitted to histological analysis (descriptive analysis and semi-quantitative analysis using a scoring system for collagen fiber formation, tissue thickness and inflammatory infiltrate). A quantitative analysis was performed by measuring the area and thickness of the granulomatous reactionary tissue (GRT). Data were analyzed by Kruskal-Wallis, ANOVA and Tukey's post-hoc tests (?=0.05). There was no significant difference (p>0.05) among the materials with respect to collagen fiber formation or GRT thickness. However, Calen/ZO produced the least severe inflammatory infiltrate (p<0.05). The area of the GRT was significantly smaller (p<0.05) for Calen/ZO and Sealapex. In conclusion, Calen/ZO presented the best tissue reaction, followed by Sealapex and ZOE.
Resumo:
This study aimed to assess the response of apical and periapical tissues of dogs' teeth after root canal filling with different materials. Forty roots from dogs' premolars were prepared biomechanically and assigned to 4 groups filled with: Group I: commercial calcium hydroxide and polyethylene glycol-based paste (Calen®) thickened with zinc oxide; Group II: paste composed of iodoform, Rifocort® and camphorated paramonochlorophenol; Group III: zinc oxide-eugenol cement; Group IV: sterile saline. After 30 days, the samples were subjected to histological processing. The histopathological findings revealed that in Groups I and IV the apical and periapical regions exhibited normal appearance, with large number of fibers and cells and no resorption of mineralized tissues. In Group II, mild inflammatory infiltrate and mild edema were observed, with discrete fibrogenesis and bone resorption. Group III showed altered periapical region and thickened periodontal ligament with presence of inflammatory cells and edema. It may be concluded that the Calen paste thickened with zinc oxide yielded the best tissue response, being the most indicated material for root canal filling of primary teeth with pulp vitality.