472 resultados para PLASMIDS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The AFN1 gene is transiently expressed in germinating oat grains. As AFN1 is not expressed in dormant oat grains during imbibition, we hypothesize that AFN1 may be involved in stimulating the germination process. Sequence analysis of an AFN1 cDNA clone indicates that the AFN1 polypeptide is similar to a previously identified abscisic acid (ABA) glucosyl transferase. This suggests that AFN1 may be acting to glucosylate ABA, thereby inactivating it. As the hormone ABA is known to inhibit germination, ABA glucosylation/inactivation could lead to germination in grains expressing AFN1. To test this hypothesis, we have constructed an expression plasmid that encodes an MBP::AFN1 (maltose binding protein) fusion protein. E. coli cells carrying the expression plasmid were found to produce the MBP::AFN1 fusion protein as a substantial fraction of total protein. We are currently in the process of purifying the MBP::AFN1 fusion protein by affinity chromatography, so that it can be assayed for ABA glucosyl transferase activity. We also wish to test the effect of AFN1 gene expression during grain imbibition on the germination behavior of the grains. To this end, we have constructed plasmids for the overexpression and RNAi-based suppression of AFN1 in transgenic plants. These plasmids have been introduced into oat cells by particle bombardment and we are in the process of regenerating transgenic plants for study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abscisic acid (ABA)-mediated gene expression is a critical component of plant responses to this important hormone, which affects plant growth, development, and responses to environmental stresses. Plant responses to ABA are mediated by a number of factors including PKABA1, an ABA induced protein kinase involved in ABA-suppressed gene expression in cereal grains, and TaWD40, which has previously been shown to physically interact with PKABA1. A full-length 1.9 kb TaWD40 cDNA, CK210682, was sequenced as part of this project. Based on the deduced protein sequence, it is thought that TaWD40 may belong to the family of E3 ubiquitin ligases, possibly targeting PKABA1 for destruction. Construction of expression plasmids for overproduction of the TaWD40 polypeptide in E. coli is currently underway. The TaWD40 cDNA has been successfully amplified from the source plasmid and inserted into an intermediate plasmid, pCR2.1. The TaWD40 cDNA is currently being cloned from the pCR2.1 intermediate plasmid into two different expression vectors, pRSET-A and pMAL-c2x, for future protein production and purification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technology of modern fermented milk production is not complicated and relies largely on the characteristics of the microorganisms used in its manufacture. Biochemical substances excreted by the starter cultures contribute to the chemical, physical and organoleptic properties of cultured milks. Chemical and organoleptic properties of yoghurt starter cultures have been widely studied over several decades. Conversely the biosynthetic processes and genetic control of the production of viscous extracellular material (slime) by selected thermophillic streptococci is still insufficiently understood. This study attempted to elucidate physiological aspects and the genetic control of slime production. An attempt to chemically induce ropiness was also preformed. Twenty strains of Gram positive, thermo-tolerant, milk dotting, catalase negative cocci were collected from a variety of sources. All strains were identified as Streptococcus thermophilus. Four of the isolates were identified as capable of producing an extracellular, ‘ropy’ capsular material. A negative staining method for highlighting capsular material under light microscopy was described. Ropy isolates displayed thick capsular zones of between 6-8 μm. The isolates graded as non-ropy produced only small capsular zones (less than 2 μm); two variants displayed no capsular material. Instability of the ropy phenotype during subculture and prolonged storage was described for all four ropy isolates at varied temperatures. Instability during transfer was reported as moderate with a loss of no more than 45% of ropy colonies after 15 subcultures at 48°C A significant increase in instability, during transfer, associated with an increase in incubation temperature (37-48°C) was also reported. Prolonged storage of ropy variants over ten days resulted in a drop in the number of ropy colonies. The loss was minimal when cultures were stored at 8°C, but excessive (approaching 100%) at 37°C This suggested the presence of capsular degradative substances. Analysis of the plasmid profiles of 20 strains identified only two strains harboured plasmid DNA. All plasmids were small, less than 23kilobases, and each strain possessed a single plasmid species. Only one ropy strain contained plasmid DNA that was shown, with the aid of curing experiments, not to be linked to production of the ropy phenotype. The amino acid analogue p-fluoro-DL-phenylalanine was unsuccessful in generating ropy colonies from non-ropy variants of Streptococcus thermophilus at low concentrations. Some technological considerations for the use of ropy variants of Streptococcus thermophilus in yoghurt starter cultures were made.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Survivin, a member of the inhibitor of apoptosis (IAP) protein family, is detectable in most types of cancer, and its presence is associated with a poor prognosis. We determined the effects of gene-based therapies that inhibit survivin function in a mouse tumor model. Methods: Using five to six mice per treatment group, we injected tumors derived from mouse EL-4 thymic lymphoma cells with plasmids encoding antisense survivin, a dominant-negative mutant survivin, and the T-cell costimulator B7-1. Expression of endogenous survivin and the proteins encoded by the injected plasmids were examined by immunohistochemical staining of tumor sections and by western blot and flow cytometry analyses of isolated tumor cells. Tumor growth, the generation of antitumor cytotoxic T-lymphocyte (CTL) activity, apoptosis, and the contribution of leukocyte subsets to antitumor activity were measured. All statistical tests were two-sided. Results: Large (1.0-cm diameter) tumors had approximately 10-fold more survivin than small (0.2-cm diameter) tumors. At 28 days after injection, antisense and dominant-negative mutant survivin plasmids statistically significantly inhibited the growth of both small (P = .006 and P = .0018, respectively) and large (P<.001 for both plasmids) EL-4 tumors compared with tumors injected with empty plasmid. The growth of large tumors was further inhibited by intratumoral injection with antisense survivin and B7-1 (P = .004); thus, inhibition of survivin expression renders large tumors susceptible to B7-1-mediated immunotherapy. Mice whose tumors were completely eradicated by injection of B7-1 remained tumor free for 26 days after re-injection with EL-4 cells (when the experiment ended). Compared with tumors injected with empty plasmid, tumors injected with survivin-based plasmids had increased apoptosis, and animals bearing such tumors generated more antitumor CTLs. Conclusion: Intratumoral injection of plasmids that block survivin expression and stimulate the generation of tumor-specific CTLs may be beneficial for the treatment of large lymphomas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intercellular cell adhesion molecule-1 (ICAM-1) is a cell-surface glycoprotein capable of eliciting bidirectional signals that activate signalling pathways in leukocytes, endothelial, and smooth muscle cells. Gene transfer of xenogeneic ICAM-1 into EL-4 lymphomas causes complete tumor rejection; however, it is unknown whether the mechanism responsible involves the "foreignness" of the ICAM-1 transgene, bidirectional signalling events, ICAM-1-receptor interaction, or a combination of the latter. To begin to address this question, we constructed four different therapeutic expression vectors encoding full-length ICAM-1, and forms in which the N-terminal ligand-binding domains and cytoplasmic tail had been deleted. Mouse EL-4 tumors (0.5 cm in diameter), which actively suppress the immune response, were significantly inhibited in their growth following injection of expression plasmids encoding either full-length xenogenic (human) ICAM-1, or a functional cytoplasmic domain-deficient form that retains ligand-binding activity. Efficacy of ICAM-1-mediated antitumor immunity was significantly augmented by administration of the antivascular drug 5,6-dimethylxanthenone-4-acetic acid (DMXAA), which suppressed blood supply to the tumor, leading to enhanced leukocyte infiltration, and complete tumor eradication in a gene dosage and CD8(+) T cell and NK cell-dependent fashion. Generation of potent cytotoxic T cell (CTL)-mediated antitumor immunity was reflected by ICAM-1-facilitated apoptosis of tumor cells in situ. In contrast, nonfunctional ICAM-1 lacking the N-terminal ligand-binding Ig domain failed to generate antitumor immunity, even in the presence of DMXAA. These studies demonstrate that ICAM-1-stimulated antitumor immunity can overcome tumor-mediated immunosuppression, particularly when employed in combination with an attack on the tumor vasculature. The ligand-binding domain of ICAM-1 is essential for generating antitumor immunity, whereas the cytoplasmic domain and bidirectional activation of tumor signalling pathways are not essential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The von Hippel-Lindau tumor suppressor protein (pVHL) suppresses tumor formation by binding the alpha subunits of hypoxia-inducible factors (HIFs) responsible for stimulating tumor angiogenesis and glycolysis, targeting them for ubiquitination and proteasomal destruction. Loss of pVHL leads to the development of sporadic renal cell carcinomas (RCCs). In the present study, we sought to determine whether engineered overexpression of pVHL in tumors other than RCC can inhibit tumor growth, either as a monotherapy, or in combination with antisense HIF-1alpha therapy. Intratumoral injection of subcutaneous EL-4 thymic lymphomas with an expression plasmid encoding pVHL resulted in the downregulation of HIF-1alpha and vascular endothelial growth factor (VEGF). There was a concomitant reduction in tumor angiogenesis and increased tumor cell apoptosis due in part to downregulation of Bcl-2 expression. VHL therapy resulted in the complete regression of small (0.1 cm diameter) tumors whereas, in contrast, large (0.4 cm diameter) EL-4 tumors were only slowed in their growth. Nevertheless, large tumors completely regressed in response to intratumoral injection of a combination of antisense HIF-1alpha and VHL plasmids. Combination therapy resulted in increased losses of HIF-1alpha, VEGF, and tumor blood vessels, and increased tumor cell apoptosis. These novel results suggest that synergistic therapies that simultaneously block the expression or function of HIF-1alpha, and enhance the expression or function of VHL may be beneficial in the treatment of cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. To understand these efflux mechanisms in Mycobacterium tuberculosis, we generated knockout (KO) mutants of four efflux pumps of the pathogen belonging to different classes. We measured the MICs and kill values of two different compound classes on the wild type (WT) and the efflux pump (EP) KO mutants in the presence and absence of the efflux inhibitors verapamil and L-phenylalanyl-L-arginyl-β-naphthylamide (PAβN). Among the pumps studied, the efflux pumps belonging to the ABC (ATP-binding cassette) class, encoded by Rv1218c, and the SMR (small multidrug resistance) class, encoded by Rv3065, appear to play important roles in mediating the efflux of different chemical classes and antibiotics. Efflux pumps encoded by Rv0849 and Rv1258c also mediate the efflux of these compounds, but to a lesser extent. Increased killing is observed in WT M. tuberculosis cells by these compounds in the presence of either verapamil or PAβN. The efflux pump KO mutants were more susceptible to these compounds in the presence of efflux inhibitors. We have shown that these four efflux pumps of M. tuberculosis play a vital role in mediating efflux of different chemical scaffolds. Inhibitors of one or several of these efflux pumps could have a significant impact in the treatment of tuberculosis. The identification and characterization of Rv0849, a new efflux pump belonging to the MFS (major facilitator superfamily) class, are reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intracellular trafficking and subsequent incorporation of Gag-Pol into human immunodeficiency virus type 1 (HIV-1) remains poorly defined. Gag-Pol is encoded by the same mRNA as Gag and is generated by ribosomal frameshifting. The multimerization of Gag and Gag-Pol is an essential step in the formation of infectious viral particles. In this study, we examined whether the interaction between Gag and Gag-Pol is initiated during protein translation in order to facilitate the trafficking and subsequent packaging of Gag-Pol into the virion. A conditional cotransfection system was developed in which virion formation required the coexpression of two HIV-1-based plasmids, one that produces both Gag and Gag-Pol and one that only produces Gag-Pol. The Gag-Pol proteins were either immunotagged with a His epitope or functionally tagged with a mutation (K65R) in reverse transcriptase that is associated with drug resistance. Gag-Pol packaging was assessed to determine whether the Gag-Pol incorporated into the virion was preferentially packaged from the plasmid that expressed both Gag and Gag-Pol or whether it could be packaged from either plasmid. Our data show that translation of Gag and Gag-Pol from the same mRNA is not critical for virion packaging of the Gag-Pol polyprotein or for viral function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ensifer (Sinorhizobium) medicae is an effective nitrogen fixing microsymbiont of a diverse range of annual Medicago (medic) species. Strain WSM419 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from a M. murex root nodule collected in Sardinia, Italy in 1981. WSM419 was manufactured commercially in Australia as an inoculant for annual medics during 1985 to 1993 due to its nitrogen fixation, saprophytic competence and acid tolerance properties. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first report of a complete genome sequence for a microsymbiont of the group of annual medic species adapted to acid soils. We reveal that its genome size is 6,817,576 bp encoding 6,518 protein-coding genes and 81 RNA only encoding genes. The genome contains a chromosome of size 3,781,904 bp and 3 plasmids of size 1,570,951, 1,245,408 and 219,313 bp. The smallest plasmid is a feature unique to this medic microsymbiont.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv. trifolii is the effective nitrogen fixing microsymbiont of a diverse range of annual and perennial Trifolium (clover) species. Strain WSM2304 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from Trifolium polymorphum in Uruguay in 1998. This microsymbiont predominated in the perennial grasslands of Glencoe Research Station, in Uruguay, to competitively nodulate its host, and fix atmospheric nitrogen. Here we describe the basic features of WSM2304, together with the complete genome sequence, and annotation. This is the first completed genome sequence for a nitrogen fixing microsymbiont of a clover species from the American centre of origin. We reveal that its genome size is 6,872,702 bp encoding 6,643 protein-coding genes and 62 RNA only encoding genes. This multipartite genome was found to contain 5 distinct replicons; a chromosome of size 4,537,948 bp and four circular plasmids of size 4,537,948, 1,266,105, 501,946, 308,747 and 257,956 bp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv trifolii is a soil-inhabiting bacterium that that has the capacity to be an effective nitrogen fixing microsymbiont of a diverse range of annual Trifolium (clover) species. Strain WSM1325 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from root nodules collected in 1993 from the Greek Island of Serifos. WSM1325 is manufactured commercially in Australia as an inoculant for a broad range of annual clovers of Mediterranean origin due to its superior attributes of saprophytic competence, nitrogen fixation and acid-tolerance. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence for a microsymbiont of annual clovers. We reveal that its genome size is 7,418,122 bp encoding 7,232 protein-coding genes and 61 RNA-only encoding genes. This multipartite genome contains 6 distinct replicons; a chromosome of size 4,767,043 bp and 5 plasmids of size 828,924, 660,973, 516,088, 350,312 and 294,782 bp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The HIV-1 Gag precursor protein, Pr55(Gag), is a multi-domain polyprotein that drives HIV-1 assembly. The morphological features of HIV-1 suggested Pr55(Gag) assumes a variety of different conformations during virion assembly and maturation, yet structural determination of HIV-1 Pr55(Gag) has not been possible due to an inability to express and to isolate large amounts of full-length recombinant Pr55(Gag) for biophysical and biochemical analyses. This challenge is further complicated by HIV-1 Gag's natural propensity to multimerize for the formation of viral particle (with ∼2500 Gag molecules per virion), and this has led Pr55(Gag) to aggregate and be expressed as inclusion bodies in a number of in vitro protein expression systems. This study reported the production of a recombinant form of HIV-1 Pr55(Gag) using a bacterial heterologous expression system. Recombinant HIV-1 Pr55(Gag) was expressed with a C-terminal His×6 tag, and purified using a combination of immobilized metal affinity chromatography and size exclusion chromatography. This procedure resulted in the production of milligram quantities of high purity HIV-1 Pr55(Gag) that has a mobility that resembles a trimer in solution using size exclusion chromatography analysis. The high quantity and purity of the full length HIV Gag will be suitable for structural and functional studies to further understand the process of viral assembly, maturation and the development of inhibitors to interfere with the process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesorhizobium loti strain R88B was isolated in 1993 in the Rocklands range in Otago, New Zealand from a Lotus corniculatus root nodule. R88B is an aerobic, Gram-negative, non-spore-forming rod. This report reveals the genome of M. loti strain R88B contains a single scaffold of size 7,195,110 bp which encodes 6,950 protein-coding genes and 66 RNA-only encoding genes. This genome does not harbor any plasmids but contains the integrative and conjugative element ICEMlSym(R7A), also known as the R7A symbiosis island, acquired by horizontal gene transfer in the field environment from M. loti strain R7A. It also contains a mobilizable genetic element ICEMladh(R88B), that encodes a likely adhesin gene which has integrated downstream of ICEMlSym(R7A), and three acquired loci that together allow the utilization of the siderophore ferrichrome. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesorhizobium loti strain NZP2037 was isolated in 1961 in Palmerston North, New Zealand from a Lotus divaricatus root nodule. Compared to most other M. loti strains, it has a broad host range and is one of very few M. loti strains able to form effective nodules on the agriculturally important legume Lotus pedunculatus. NZP2037 is an aerobic, Gram negative, non-spore-forming rod. This report reveals that the genome of M. loti strain NZP2037 does not harbor any plasmids and contains a single scaffold of size 7,462,792 bp which encodes 7,318 protein-coding genes and 70 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesorhizobium loti strain R7A was isolated in 1993 in Lammermoor, Otago, New Zealand from a Lotus corniculatus root nodule and is a reisolate of the inoculant strain ICMP3153 (NZP2238) used at the site. R7A is an aerobic, Gram-negative, non-spore-forming rod. The symbiotic genes in the strain are carried on a 502-kb integrative and conjugative element known as the symbiosis island or ICEMlSym(R7A). M. loti is the microsymbiont of the model legume Lotus japonicus and strain R7A has been used extensively in studies of the plant-microbe interaction. This report reveals that the genome of M. loti strain R7A does not harbor any plasmids and contains a single scaffold of size 6,529,530 bp which encodes 6,323 protein-coding genes and 75 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.