946 resultados para PHOTOREFRACTIVE CRYSTALS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectra of molecules oriented in liquid crystalline media are dominated by partially averaged dipolar couplings. In the 13C–1H HSQC, due to the inefficient hetero-nuclear dipolar decoupling in the indirect dimension, normally carried out by using a π pulse, there is a considerable loss of resolution. Furthermore, in such strongly orienting media the 1H–1H and 13C–1H dipolar couplings leads to fast dephasing of transverse magnetization causing inefficient polarization transfer and hence the loss of sensitivity in the indirect dimension. In this study we have carried out 13C–1H HSQC experiment with efficient polarization transfer from 1H to 13C for molecules aligned in liquid crystalline media. The homonuclear dipolar decoupling using FFLG during the INEPT transfer delays and also during evolution period combined with the π pulse heteronuclear decoupling in the t1 period has been applied. The studies showed a significant reduction in partially averaged dipolar couplings and thereby enhancement in the resolution and sensitivity in the indirect dimension. This has been demonstrated on pyridazine and pyrimidine oriented in the liquid crystal. The two closely resonating carbons in pyrimidine are better resolved in the present study compared to the earlier work [H.S. Vinay Deepak, Anu Joy, N. Suryaprakash, Determination of natural abundance 15N–1H and 13C–1H dipolar couplings of molecules in a strongly orienting media using two-dimensional inverse experiments, Magn. Reson. Chem. 44 (2006) 553–565].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the isothermal, magnetic field (H‖c) dependent rf power P(H) dissipation (Hrf‖a) in the superconducting state of Bi2Sr2CaCu2O8 single crystals prior to and after irradiation with 250 MeV 107Ag17+ ions. In the pristine state, P(H) shows an initial decrease with increase in field, reaches a minimum at HM(T) and increases monotonically for H>HM(T). This behavior arises when the electromagnetic coupling between the pancake vortices in adjacent CuO layers becomes dominant on increasing the field and minimizes the distortions of the flux lines by confining the 2D vortices. In the post irradiated state, such an initial decrease and the minimum in P(H) is not observed but only a much reduced rf dissipation that monotonically increases with field from H = 0 onwards is seen. We attribute this difference to the strong enhancement of the tilt modulus C44 of the flux lines on irradiation when the pancake vortices in adjacent CuO bilayers are pinned along the track forming a well-stacked flux line in the field direction (‖c). We have also observed that the rf dissipation disappears at a certain temperature Tsf, at which the normal core of the flux line becomes commensurate with the columnar track diameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature dependence of the energy gap and free carrier absorption in a high-quality InAs0.05Sb0.95 single crystal was studied between 90 K and 430 K through the absorption spectra. At this alloy concentration, the room-temperature energy gap was measured to be 0.15 eV. Varshni- and the Bose–Einstein-type fit parameters were obtained from the measured temperature dependence of the energy gap, and the latter gave the zero-temperature gap to be 0.214 eV. It was found that although Weider’s empirical formula for the dependence of the energy gap on temperature and the alloy concentration agrees with the value of the gap at room temperature, it is inaccurate in describing its temperature dependence. From the free carrier absorption measurements, the phonon limited cross section of 7.35×10−16 cm2 at 15 μm was deduced at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radially-homogeneous and single-phase InAsxSb(1−x) crystals, up to 5.0 at. % As concentration, have been grown using the rotatory Bridgman method. Single crystallinity has been confirmed by x-ray and electron diffraction studies. Infrared transmission spectra show a continuous decrease in optical energy gap with the increase of arsenic content in InSb. The measured values of mobility and carrier density at room temperature (for x = .05) are 5.6×104 cm2/V s and 2.04×1016 cm−3, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transport and magnetic properties of flux-grown Nd1−xPbxMnO3 single crystals (x=0.15–0.5) are studied in the temperature range 300–77 K and 280–2 K, respectively. Magnetization measurements with a superconducting quantum interference device confirm a paramagnetic to ferromagnetic transition around 110, 121, 150, 160, and 178 K for x=0.15, 0.2, 0.3, 0.4, and 0.5, respectively. Four probe resistivity measurements at low temperatures show a monotonic increase for x=0.15 which represents a ferromagnetic insulating (FMI) phase. For Nd0.8Pb0.2MnO3 there is a slope change present in the resistivity profile at 127 K where metal to insulator transition (MI) sets in. For x=0.3 this MI transition is more prominent. However, both these samples have FMI phase at low temperature. When the concentration of lead increases (x>0.3) the sample displays a clear insulator to metal transition with a low temperature ferromagnetic metallic phase. On the basis of these measurements we have predicted the phase diagram of Nd1−xPbxMnO3. Magnetization measurements by a vibration sample magnetometer point out the appreciable differences between zero field cooled and field cooled profiles below the ferromagnetic to paramagnetic transition temperature for all x. These are indicative of magnetic frustration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In1−xMnxSb crystals are grown with different Mn doping concentrations (x = 0.006, 0.01, 0.02, and 0.04) beyond the equilibrium solubility limit by the horizontal Bridgman technique. Structural, magnetic, and magnetotransport properties of the grown crystals are studied in the temperature range 1.4–300 K. Negative magnetoresistance and anomalous Hall effect are observed below 10 K. The anomalous Hall coefficient is found to be negative. The temperature dependence of the magnetization measurement shows a magnetic ordering below 10 K, which could arise from InMnSb alloy formation. Also, the saturation in magnetization observed even at room temperature suggests the existence of ferromagnetic MnSb clusters in the crystals, which has been verified by scanning electron microscopy studies. The carrier concentration increases with Mn doping, and this results in a decrease of resistivity. The carrier concentration and mobility at room temperature for the doped crystals are ∼ 2×1019 cm−3 and ∼ 200 cm2/V s, respectively. The observed anomalous Hall effect suggests the carrier mediated ferromagnetism below 10 K in In1−xMnxSb crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combination of femtosecond Kerr, two photon absorption, and impulsive stimulated Raman scattering (ISRS) experiments have been carried out to investigate the effect of pulse energy and crystal temperature on the generation of coherent polaritons and phonons in 〈110〉 cut ZnTe single crystals of three different resistivities. We demonstrate that the effect of two photon induced free carriers on the creation of both the polaritons and phonons is largest at 4 K where the free carrier lifetime is enhanced. The temperature dependant ISRS on high and low purity ZnTe crystals allows us to unambiguously assign the phonon mode at 3.5 THz to the longitudinal acoustic mode at X-point in the Brillouin zone, LA(X).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is pointed out that the change in refractive index with temperature of a crystal is different from what is calculated from the accompanying change in volume and the piezo-optic coefficients. The difference, which is a pure temperature effect, is explained as being due to the change in polarizability of the atoms produced by a change in the amplitude of vibration. The polarizability (α) can be expanded as a Taylor series in the changes of the distance (r) between the atoms and it is found that while the piezo-optic coefficient depends only on ∂α/∂r, the pure temperature effect is a function of ∂ 2 a/∂r 2. Making use of the experimental data, the values of a and its first two derivatives can be determined. These values are foundto be of the same order as those deduced from the intensities of Rayleigh and Raman scattering of light. The theory predicts that dn/dT should vary as the coefficient of cubical expansion at different temperatures and this is verified to be true. Finally, calculations are made of the thermo- and piezo-optic coefficients, considering the electrostatic interaction between the atoms. These do not adequately explain the observed facts, since no provision is made for the distortion of electron atmospheres around the atoms and the consequent changes in polarizability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial purity (99.8%) magnesium single crystals were subjected to plane strain compression (PSC) along the c-axis at 200 and 370 degrees C and a constant strain rate of 10(-3) s(-1). Extension was confined to the < 1 1 (2) over bar 0 > direction and the specimens were strained up to a logarithmic true strain of -1. The initial rapid increase in flow stress was followed by significant work softening at different stresses and comparable strains of about -0.05 related to macroscopic twinning events. The microstructure of the specimen after PSC at 200 degrees C was characterized by a high density of {1 0 (1) over bar 1} and {1 0 (1) over bar 3} compression twins, some of which were recrystallized. After PSC at 370 degrees C, completely recrystallized twin bands were the major feature of the observed microstructure. All new grains in these bands retained the same c-axis orientation of their compression twin hosts. The basal plane in these grains was randomly rotated around the c-axis, forming a fiber texture component. The obtained results are discussed with respect to the mechanism of recrystallization, the specific character of the boundaries between new grains and the initial matrix, and the importance of the dynamically recrystallized bands for strain accommodation in these deformed magnesium single crystals. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In normal materials, the nonlinear optical effects arise from nonlinearities in the polarisabilities of the constituent atoms or molecules. On the other hand the nonlinear optical effects in liquid crystals arise from totally different processes. Also they occur at relatively low laser intensities. In a laser field a liquid crystal exhibits many novel and interesting nonlinear optical effects. In addition we also find laser field induced effects that are peculiar to liquid crystals, like structural transformations, orientational transitions, modulated structures and phase transitions, to name a few. Here we dwell upon a few of these interesting and important nonlinear optical phenomena that exist in nematic liquid crystals.