784 resultados para PHOSPHOLIPID-BILAYERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of drying and rewetting (DRW) have been studied extensively in non-saline soils, but little is known about the impact of DRW in saline soils. An incubation experiment was conducted to determine the impact of 1-3 drying and re-wetting events on soil microbial activity and community composition at different levels of electrical conductivity in the saturated soil extract (ECe) (ECe 0.7, 9.3, 17.6 dS m(-1)). A non-saline sandy loam was amended with NaCl to achieve the three EC levels 21 days prior to the first DRW; wheat straw was added 7 days prior to the first DRW. Each DRW event consisted of 1 week drying and 1 week moist (50% of water holding capacity, WHC). After the last DRW, the soils were maintained moist until the end of the incubation period (63 days after addition of the wheat straw). A control was kept moist (50% of WHC) throughout the incubation period. Respiration rates on the day after rewetting were similar after the first and the second DRW, but significantly lower after the third DRW. After the first and second DRW, respiration rates were lower at EC17.6 compared to the lower EC levels, whereas salinity had little effect on respiration rates after the third DRW or at the end of the experiment when respiration rates were low. Compared to the continuously moist treatment, respiration rates were about 50% higher on day 15 (d15) and d29. On d44, respiration rates were about 50% higher at EC9.7 than at the other two EC levels. Cumulative respiration was increased by DRW only in the treatment with one DRW and only at the two lower EC levels. Salinity affected microbial biomass and community composition in the moist soils but not in the DRW treatments. At all EC levels and all sampling dates, the community composition in the continuously moist treatment differed from that in the DRW treatments, but there were no differences among the DRW treatments. Microbes in moderately saline soils may be able to utilise substrates released after multiple DRW events better than microbes in non-saline soil. However, at high EC (EC17.6), the low osmotic potential reduced microbial activity to such an extent that the microbes were not able to utilise substrate released after rewetting of dry soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exchange of lipids with cells and other lipoproteins is a crucial process in HDL metabolism and for HDL antiatherogenic function. Here, we tested a practical method to quantify the simultaneous transfer to HDL of phospholipids, free-cholesterol, esterified cholesterol and triacylglycerols and to verify the lipid transfer in patients with coronary artery disease (CAD) or undergoing statin treatment. Twenty-eight control subjects without CAD, 27 with CAD and 25 CAD patients under simvastatin treatment were studied. Plasma samples were incubated with a donor nanoemulsion prepared by ultrasonication of the constituent lipids and labeled with radioactive lipids; % lipids transferred to HDL were quantified in the HDL-containing supernatant after chemical precipitation of non-HDL fractions and the nanoemulsion. The assay was precise and reproducible. Increase of temperature (4-37 A degrees C), of incubation period (5 min to 2 h), of HDL-cholesterol concentration (33-244 mg/dL) and of mass of nanoemulsion lipids (0.075-0.3 mg/mu L) resulted in increased lipid transfer from the nanoemulsion to HDL. In contrast, increasing pH (6.5-8.5) and albumin concentration (3.5-7.0 g/dL) did not affect lipid transfer. There was no difference between CAD and control non-CAD with regard to the lipid transfer, but statin treatment reduced the transfer to HDL of all four lipids. The test herein described is a valid and practical tool for exploring an important aspect of HDL metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A biotin group was covalently attached to the C terminus of gramicidin A (gA) through a linker arm comprising a glycine residue with either one (gAXB) or two caproyl groups (gAXXB). High-resolution two-dimensional NMR spectroscopy was used to determine the structure of these modified gA analogues and [Lys(16)]gramicidin A (gA-Lys) in sodium dodecyl-d(25) sulphate micelles. Gated gA ion channels based on linking a receptor group to these gA analogues have been used recently as a component in a sensing device. The conformations of the gA backbones and amino acid side chains of lysinated gA and biotinylated gA in detergent micelles were found to be almost identical to that of native gA, i.e. that of an N-terminal to N-terminal (head to head) dimer formed by two right-handed, single-stranded beta(6.3) helices. The biotin tail of the gAXB and gAXXB and the lysine extremity of gA-Lys appeared to lie outside the micelle. Thus it appears that the covalent attachment of functional groups to the C terminus of gA does not disrupt the peptide's helical configuration. Further, single channel measurements of all three gA analogues showed that functioning ion channels were preserved within a membrane environment. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using tryptophan C-13-enriched at the C-4 (C epsilon(3)) of the indole, the orientation of the C epsilon(3) chemical shift tensor relative to the C epsilon(3)-H dipolar axis was determined from the C-13 chemical shift/C-13-H-1 dipolar 2D NMR powder pattern. The principal values obtained were 208, 137 and 15 ppm with sigma(33) perpendicular to the indole plane, and sigma(11) (least shielded direction) 5 degrees off the C epsilon(3)-H bond toward C xi(3). The side off the C epsilon(3)-H bond was determined by comparing the reduced chemical shift anisotropies obtained by solid-state NMR and from molecular dynamics calculations of [4-C-13] tryptophans in gramicidin A aligned in phospholipid membranes. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of RK-1, an antimicrobial peptide from rabbit kidney recently discovered from homology screening based on the distinctive physicochemical properties of the corticostatins/defensins. RK-1 consists of 32 residues, including six cysteines arranged into three disulfide bonds. It exhibits antimicrobial activity against Escherichia coli and activates Ca2+ channels in vitro. Through its physicochemical similarity, identical cysteine spacing, and linkage to the corticostatins/defensins, it was presumed to be a member of this family. However, RK-1 lacks both a large number of arginines in the primary sequence and a high overall positive charge, which are characteristic of this family of peptides. The three-dimensional solution structure, determined by NMR, consists of a triple-stranded antiparallel beta -sheet and a series of turns and is similar to the known structures of other alpha -defensins. This has enabled the definitive classification of RK-1 as a member of this family of antimicrobial peptides. Ultracentrifuge measurements confirmed that like rabbit neutrophil defensins, RK-1 is monomeric in solution, in contrast to human neutrophil defensins, which are dimeric.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reconstitution of membrane proteins into liposomes is a useful tool to prepare antigenic components that induce immunity. We have investigated the influence of the dipalmitoylphosphatidylcholine (DPPC)/cholesterol molar ratio on the incorporation of a GPI-protein from Leishmania amazonensis on liposomes and Langmuir monolayers. The latter system is a well behaved and practical model, for understanding the effect of variables such as surface composition and lipid packing on protein incorporation. We have found that the DPPC/cholesterol molar ratio significantly alters the incorporation of the GPI-protein. In the absence of cholesterol, reconstitution is more difficult and proteoliposomes cannot be prepared, which we correlated with disruption of the DPPC layer. Our results provide important information that Could be employed in the development of a vaccine system for this disease or be used to produce other GPI-systems for biotechnological application. (c) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simple equations are proposed for determining elastic modulus and hardness properties of thin films on substrates from nanoindentation experiments. An empirical formulation relates the modulus E and hardness H of the film/substrate bilayer to corresponding material properties of the constituent materials via a power-law relation. Geometrical dependence of E and H is wholly contained in the power-law exponents, expressed here as sigmoidal functions of indenter penetration relative to film thickness. The formulation may be inverted to enable deconvolution of film properties from data on the film/substrate bilayers. Berkovich nanoindentation data for dense oxide and nitride films on silicon substrates are used to validate the equations and to demonstrate the film property deconvolution. Additional data for less dense nitride films are used to illustrate the extent to which film properties may depend on the method of fabrication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are practical and academic situations that justify the study of calcium carbonate crystallization and especially of systems that are associated with organic matrices and a confined medium. Despite the fact that many different matrices have been studied, the use of well-behaved, thin organic films may provide new knowledge about this system. In this work, we have studied the growth of calcium carbonate particles on well-defined organic matrices that were formed by layer-by-layer (LbL) polyelectrolyte films deposited on phospholipid Langmuir-Blodgett films (LB). We were able to change the surface electrical charge density of the LB films by changing the proportions of a negatively charged lipid, the sodium salt of dimyristoyl-sn-glycero-phosphatidyl acid (DMPA), and a zwitterionic lipid. dimyristoyl-sn-glycero-phosphatidylethanolamine (DMPE). This affects the subsequent polyelectrolyte LbL film deposition, which also changes the the nature of the bonding (electrostatic interaction or hydrogen bonding). This approach allowed for the formation of calcium carbonate particles of different final shapes, roughnesses, and sizes. The masses of deposited lipids, polyelectrolytes, and calcium cabonate were quantified by the quartz crystal microbalance technique. The structures of obtained particles were analyzed by scanning electron microscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three dermaseptins, DS 01, DD K, and DD L, were compared with respect to their structural features and interactions with liposomes. Circular dichroic spectra at alcohols of different chain lengths revealed that DS 01 has the higher helicogenic potential in hydrophobic media. Binding of DS 01, DD K, and DD L to liposomes induced significant blue shifts of the emission spectra of the single tryptophan located at position 3 of all sequences indicating association of the peptides with bilayers. Kinetics evaluation of atomic force microscopy images evidenced the strong fusogenic activity of DS 01 whereas DD K and DD L showed increased lytic activities. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface pressure (pi)-molecular area (A) curves were used to characterize the packing of pseudo-ternary mixed Langmuir monolayers of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and L-alpha-dioleoyl phosphatidylethanolamine (DOPE). This pseudo-ternary mixture EPC/DOPE/DOTAP has been successfully employed in liposome formulations designed for DNA non-viral vectors. Pseudo-binary mixtures were also studied as a control. Miscibility behavior was inferred from pi-A curves applying the additivity rule by calculating the excess free energy of mixture (Delta G(Exc)). The interaction between the lipids was also deduced from the surface compressional modulus (C(s)(-1)). The deviation from ideality shows dependence on the lipid polar head type and monolayer composition. For lower DOPE concentrations, the forces are predominantly attractive. However, if the monolayer is DOPE rich, the DOTAP presence disturbs the PE-PE intermolecular interaction and the net interaction is then repulsive. The ternary monolayer EPC/DOPE/DOTAP presented itself in two configurations, modulated by the DOPE content, in a similar behavior to the DOPE/DOTAP monolayers. These results contribute to the understanding of the lipid interactions and packing in self-assembled systems associated with the in vitro and in vivo stability of liposomes. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the use of the electrostatic layer-by-layer (LbL) technique for the preparation of bioanodes with potential application in ethanol/O(2) biofuel cells. More specifically, the LbL technique was employed for immobilization of dehydrogenase enzymes and polyamidoamine (PAMAM) dendrimers onto carbon paper support. Both mono (anchoring only the enzyme alcohol dehydrogenase, ADH) and bienzymatic (anchoring both ADH and aldehyde dehydrogenase, AldDH) systems were tested. The amount of ADH deposited onto the Toray (R) paper was 95 ng cm(-2) per bilayer. Kinetic studies revealed that the LbL technique enables better control of enzyme disposition on the bioanode, as compared with the results obtained with the bioanodes prepared by the passive adsorption technique. The power density values achieved for the mono-enzymatic system as a function of the enzyme load ranged from 0.02 to 0.063 mW cm(-2) for the bioanode containing 36 ADH bilayers. The bioanodes containing a gas diffusion layer (GDL) displayed enhanced performance, but their mechanical stability must be improved. The bienzymatic system generated a power density of 0.12 mW cm(-2). In conclusion, the LbL technique is a very attractive approach for enzyme immobilization onto carbon platform, since it enables strict control of enzyme disposition on the bioanode surface with very low enzyme consumption. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porphyrins are currently used in photodynamic therapy as photosensitizers. In this paper we studied the interaction of two charged porphyrins, 5, 10, 15, 20-mesotetrakis(N-metyl-4-pyridyl) porphyrin, (TMPyP/chloride salt) cationic, and 5, 10, 15, 20-meso-tetrakis(sulfonatophenyl) porphyrin, (TPPS(4)/sodium salt) anionic, nanoassembled in phospholipid Langmuir monolayers and Langmuir-Blodgett films. Furthermore, we used chitosan to mediate the interaction between the porphyrins and the model membrane, aiming to understand the role of the polysaccharide in a molecular level. The effect of the interaction of the photosensitizers on the fluidity of the lipid monolayer was investigated by using dilatational surface elasticity. We also used photoluminescence (PL) spectroscopy to identify the porphyrins adsorbed in the phospholipid films. We observed an expansion of the monolayer promoted by the adsorption of the porphyrins into the lipid-air interface which was more pronounced in the case of TMPyP, as a consequence of a strong electrostatic interaction with the anionic monolayer. The chitosan promoted a higher adsorption of the porphyrins on the phospholipid monolayers and enabled the porphyrin to stay in its monomeric form (as confirmed by PL spectroscopy), thus demonstrating that chitosan can be pointed out as a potential photosensitizer delivery system in photodynamic therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work the interaction of the antimicrobial peptide indolicidin (IND) and its mutants CP10A and CP11 with a eukaryotic membrane model was examined by molecular dynamics simulations. The aim was to analyse the behaviour of these antimicrobial peptides when they interact with a eukaryotic modelled membrane, thereby obtaining atomic detailed observations that are not experimentally available. In the simulations, the widely studied dipalmitoylphosphatidylcholine hydrated bilayer was used as a eukaryotic membrane model. In agreement with experimental observations, the peptides IND, CP10A, and CP11 insert into the bilayer differently; the peptides that insert more deeply present the major hemolytic activities. The hydrophobic residues are responsible for the insertion, but some Trp residues of the peptides remain at the bilayer/water interface because they interact with the bilayer choline groups by cation-pi interactions that should be important for recognition of eukaryotic membrane by the three studied peptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue-nonspecific alkaline phosphatase (TNAP), present on the surface of chondrocyte- and osteoblast-derived matrix vesicles (MVs), plays key enzymatic functions during endochondral ossification. Many studies have shown that MVs are enriched in TNAP and also in cholesterol compared to the plasma membrane. Here we have studied the influence of cholesterol on the reconstitution of TNAP into dipalmitoylphosphatidylcholine (DPPC)-liposomes, monitoring the changes in lipid critical transition temperature (T(c)) and enthalpy variation (Delta H) using differential scanning calorimetry (DSC). DPPC-liposomes revealed a T(c) of 41.5 degrees C and Delta H of 7.63 Kcal mol(-1). The gradual increase in cholesterol concentration decrease Delta H values, reaching a Delta H of 0.87 Kcal mol(-1) for DPPC: cholesterol system with 36 mol% of cholesterol. An increase in T(c), up to 47 degrees C for the DPPC:cholesterol liposomes (36 mol% of Chol), resulted from the increase in the area per molecule in the gel phase. TNAP (0.02 mg/mL) reconstitution was done with protein:lipid 1:10,000 (molar ratio), resulting in 85% of the added enzyme being incorporated. The presence of cholesterol reduced the incorporation of TNAP to 42% of the added enzyme when a lipid composition of 36 mol% of Chol was used. Furthermore, the presence of TNAP in proteoliposomes resulted in a reduction in Delta H. The gradual proportional increase of cholesterol in liposomes results in broadening of the phase transition peak and eventually eliminates the cooperative gel-to-liquid-crystalline phase transition of phospholipids bilayers. Thus, the formation of microdomains may facilitate the clustering of enzymes and transporters known to be functional in MVs during endochondral ossification. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5`-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5`-monophosphate, and PP(i) by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5`-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PPi were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1- containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PPi by TNAP-, and TNAP plus NPP1- containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.