864 resultados para PERSUASIVE TECHNOLOGIES
Resumo:
The iron ore pelletizing process consumes high amounts of energy, including nonrenewable sources, such as natural gas. Due to fossil fuels scarcity and increasing concerns regarding sustainability and global warming, at least partial substitution by renewable energy seems inevitable. Gasification projects are being successfully developed in Northern Europe, and large-scale circulating fluidized bed biomass gasifiers have been commissioned in e.g. Finland. As Brazil has abundant biomass resources, biomass gasification is a promising technology in the near future. Biomasses can be converted into product gas through gasification. This work compares different technologies, e.g. air, oxygen and steam gasification, focusing on the use of the product gas in the indurating machine. The use of biosynthetic natural gas is also evaluated. Main parameters utilized to assess the suitability of product gas were adiabatic flame temperature and volumetric flow rate. It was found that low energy content product gas could be utilized in the traveling grate, but it would require burner’s to be changed. On the other hand, bio-SGN could be utilized without any adaptions. Economical assessment showed that all gasification plants are feasible for sizes greater than 60 MW. Bio-SNG production is still more expensive than natural gas in any case.
Resumo:
The aim of this work is to perform an in-depth overview on the sustainability of several major commercialized technologies for water desalination and to identify the challenges and propose suggestions for the development of water desalination technologies. The overview of those technologies mainly focuses on the sustainability from the viewpoint of total capital investment, total product cost, energy consumption and global warming index. Additionally, a systematic sustainability assessment methodology has been introduced to validate the assessment process. Conclusions are:1) Reverse osmosis desalination (RO) plants are better than multi-stage flash distillation (MSF) desalination plants and multiple-effect distillation (MED) desalination plants from the viewpoint of energy consumption, global warming index and total production cost; 2)Though energy intensive, MSF plants and MED plants secure their advantages over RO plants by lower total capital investment, wider applicability and purer water desalted and they are still likely to flourish in energy-rich area;3) Water production stage and wastewater disposal stage are the two stages during which most pollutant gases are emitted. The water production stage alone contributes approximately 80~90% of the total pollutant gases emission during its life cycle; 4)The total capital cost per m3 desalted water decreases remarkably with the increasing of plant capacity. The differences between the capital cost per m3 desalted water of RO and other desalination plants will decrease as the capacity increases; 5) It is found that utilities costs serve as the major part of the total product cost, and they account for 91.16%, 85.55% and 71.26% of the total product cost for MSF, MED and RO plants, respectively; 6) The absolute superiority of given technology depends on the actual social-economic situation (energy prices, social policies, technology advancements).
Resumo:
In this report, information is published concerning Russian water and wastewater treatment plants. The information is based on a questionnaire sent to 70 water and wastewater treatment plants in 2012-2013. The questionnaire was prepared by the International Advanced Water Technologies Centre (IAWTC) and Lahti Development Company (LADEC). The questions dealt with an assessment of the present state, the need for changes, renovation, investments, and how to improve the efficiency of the operation by training and investments. A significant need to renew the old pipelines, constructions, and processes was clearly evident. The aggregated answers can be utilized in Russia as internal benchmarking in order to arrange training and plant visits, which were requested in many of the answers. Sharing this open report with the respondents can aid networking and awareness of HELCOM requirements which relate to waste water treatment plants discharging their waste water directly or indirectly into the Baltic Sea. The aim of this report is to provide information for Finnish small and medium size companies (SMEs) as regards possible water related exportation to different parts of Russia.
Resumo:
The present study introduce two pretreatment technologies which are torrefaction and steam explosion, and compare energy balance for both technologies to investigate and compare the use of these technologies to improve pelletization. In this research, torrefaction and steam explosion pretreatments were accomplished on the mixed small diameter wood (70%) with moisture content of 40 %, and logging residues (30%) with moisture content of 45 % at temperature 230 ̊C, and treatment duration 10 min. Competing methods were evaluated, and the results showed higher volumetric energy for steam explosion pellet than torrefied pellet.
Resumo:
An electric system based on renewable energy faces challenges concerning the storage and utilization of energy due to the intermittent and seasonal nature of renewable energy sources. Wind and solar photovoltaic power productions are variable and difficult to predict, and thus electricity storage will be needed in the case of basic power production. Hydrogen’s energetic potential lies in its ability and versatility to store chemical energy, to serve as an energy carrier and as feedstock for various industries. Hydrogen is also used e.g. in the production of biofuels. The amount of energy produced during hydrogen combustion is higher than any other fuel’s on a mass basis with a higher-heating-value of 39.4 kWh/kg. However, even though hydrogen is the most abundant element in the universe, on Earth most hydrogen exists in molecular forms such as water. Therefore, hydrogen must be produced and there are various methods to do so. Today, the majority hydrogen comes from fossil fuels, mainly from steam methane reforming, and only about 4 % of global hydrogen comes from water electrolysis. Combination of electrolytic production of hydrogen from water and supply of renewable energy is attracting more interest due to the sustainability and the increased flexibility of the resulting energy system. The preferred option for intermittent hydrogen storage is pressurization in tanks since at ambient conditions the volumetric energy density of hydrogen is low, and pressurized tanks are efficient and affordable when the cycling rate is high. Pressurized hydrogen enables energy storage in larger capacities compared to battery technologies and additionally the energy can be stored for longer periods of time, on a time scale of months. In this thesis, the thermodynamics and electrochemistry associated with water electrolysis are described. The main water electrolysis technologies are presented with state-of-the-art specifications. Finally, a Power-to-Hydrogen infrastructure design for Lappeenranta University of Technology is presented. Laboratory setup for water electrolysis is specified and factors affecting its commissioning in Finland are presented.
Resumo:
The experiences of several healthcare organizations were considered to distinguish the most frequently used lean tools, the success and failure factors, and the obstacles that may appear while implementing lean. As a result, two approaches to “go lean” were defined, and analyzed from the prospective of the applicability to healthcare processes. Industrialization of healthcare was studied, and the most promising digital technology tools to improve healthcare process were highlighted. Finally, the analysis of healthcare challenges and feasible ways to address them was conducted and presented as the main result of this work. The possible ways of implementation of the findings and limitations were described in the conclusion.
Resumo:
Campylobacteriosis is an infection frequently acquired through the consumption of animal origin products. Chicken can be considered the main responsible cause in the transmission chain of this disease. Ionizing radiation was used to verify the reduction of the microbiological load of Campylobacter jejuni present in chicken liver, which, in natura, can present contamination in up to 100% of the cases. The doses of irradiation used were: 0.20 kGy, 0.27 kGy, 0.30 kGy and 0.35 kGy. The samples of chicken liver were acquired in aviaries, local supermarkets and large chain supermarkets. The samples were analyzed for Campylobacter at FIOCRUZ. Irradiation was performed at COPPE/UFRJ, using a Gamma Cell Irradiator with a 60Co gamma source. Only the frozen sample acquired at the local supermarket did not contain the bacterium. Campylobacter sp. was present in all other samples, even when using procedures and technologies that aimed at the impediment of the presence of this bacterium in food and, consequently, at the protection of human health. On the whole, the results were satisfactory; nevertheless, it is known that the bacterial growth conditions required by this bacterium are uncommon when compared to other enteropathogenic bacteria.
Resumo:
The application of technologies to extend the postharvest life of mangosteen fruit was studied and compared to storage at 25 °C/70-75%R.H (25 °C control treatment). The fruits were packed in expanded polystyrene (EPS) trays (5 fruits/tray). Five treatments were carried out at 13 °C/ 90-95% RH: application of carnauba wax coating, lecithin + CMC (carboxymethyl cellulose) coating, 50 µm LDPE (low density polyethylene) film coating, 13 µm PVC (Polyvinyl chloride), and non-coated sample (13 °C control treatment). Physicochemical analyses were performed twice a week. A statistical design was completely randomized with 8 repetitions for each treatment plus the control treatment. The results were submitted to variance analysis, and the averages compared by the Tukey test at 5% probability. Among the quality parameters analyzed, more significant differences were observed for weight loss, texture, and peel moisture content. The results showed that the maximum storage period for mangosteen at 25 °C is two weeks; while storage at13 °C can guarantee the conservation of this fruit for 25 days. Therefore, the treatment at 13 °C/90-95% RH without the use of coatings and films was more effective and economical.
Resumo:
Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by a myriad of factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site. It was hypothesized that winter hardiness would be influenced by certain terroir factors , specifically that vines with low water status [more negative leaf water potential (leaf ψ)] would be more winter hardy than vines with high water status (more positive leaf ψ). Twelve different vineyard blocks (six each of Riesling and Cabernet franc) throughout the Niagara Region in Ontario, Canada were chosen. Data were collected during the growing season (soil moisture, leaf ψ), at harvest (yield components, berry composition), and during the winter (bud LT50, bud survival). Interpolation and mapping of the variables was completed using ArcGIS 10.1 (ESRI, Redlands, CA) and statistical analyses (Pearson’s correlation, principal component analysis, multilinear regression) were performed using XLSTAT. Clear spatial trends were observed in each vineyard for soil moisture, leaf ψ, yield components, berry composition, and LT50. Both leaf ψ and berry weight could predict the LT50 value, with strong positive correlations being observed between LT50 and leaf ψ values in eight of the 12 vineyard blocks. In addition, vineyards in different appellations showed many similarities (Niagara Lakeshore, Lincoln Lakeshore, Four Mile Creek, Beamsville Bench). These results suggest that there is a spatial component to winter injury, as with other aspects of terroir, in the Niagara region.
Resumo:
Vineyards vary over space and time, making geomatics technologies ideally suited to study terroir. This study applied geomatics technologies - GPS, remote sensing and GIS - to characterize the spatial variability at Stratus Vineyards in the Niagara Region. The concept of spatial terroir was used to visualize, monitor and analyze the spatial and temporal variability of variables that influence grape quality. Spatial interpolation and spatial autocorrelation were used to measure the pattern demonstrated by soil moisture, leaf water potential, vine vigour, soil composition and grape composition on two Cabernet Franc blocks and one Chardonnay block. All variables demonstrated some spatial variability within and between the vineyard block and over time. Soil moisture exhibited the most significant spatial clustering and was temporally stable. Geomatics technologies provided valuable spatial information related to the natural spatial variability at Stratus Vineyards and can be used to inform and influence vineyard management decisions.
Resumo:
Abstract This study was undertaken to examine traditional forms of literacy and the newest form of literacy: technology. Students who have trouble reading traditional forms of literacy tend to have lower self-esteem. This research intended to explore if students with reading difficulties and, therefore, lower self-esteem, could use Social Networking Technologies including text messaging, Facebook, email, blogging, MySpace, or Twitter to help improve their self-esteem, in a field where spelling mistakes and grammatical errors are commonplace, if not encouraged. A collective case study was undertaken based on surveys, individual interviews, and gathered documents from 3 students 9-13 years old. The data collected in this study were analyzed and interpreted using qualitative methods. These cases were individually examined for themes, which were then analyzed across the cases to examine points of convergence and divergence in the data. The research found that students with reading difficulties do not necessarily have poor self-esteem, as prior research has suggested (Carr, Borkowski, & Maxwell, 1991; Feiler, & Logan, 2007; Meece, Wigfield, & Eccles, 1990; Pintirch & DeGroot, 1990; Pintrich & Garcia, 1991). All of the participants who had reading difficulties, were found both through interviews and the CFSEI-3 self-esteem test (Battle, 2002) to have average self-esteem, although their parents all stated that their child felt poorly about their academic abilities. The research also found that using Social Networking Technologies helped improve the self-esteem of the majority of the participants both socially and academically.