982 resultados para P element susceptibility
Resumo:
Every year, debris flows cause huge damage in mountainous areas. Due to population pressure in hazardous zones, the socio-economic impact is much higher than in the past. Therefore, the development of indicative susceptibility hazard maps is of primary importance, particularly in developing countries. However, the complexity of the phenomenon and the variability of local controlling factors limit the use of processbased models for a first assessment. A debris flow model has been developed for regional susceptibility assessments using digital elevation model (DEM) with a GIS-based approach.. The automatic identification of source areas and the estimation of debris flow spreading, based on GIS tools, provide a substantial basis for a preliminary susceptibility assessment at a regional scale. One of the main advantages of this model is its workability. In fact, everything is open to the user, from the data choice to the selection of the algorithms and their parameters. The Flow-R model was tested in three different contexts: two in Switzerland and one in Pakistan, for indicative susceptibility hazard mapping. It was shown that the quality of the DEM is the most important parameter to obtain reliable results for propagation, but also to identify the potential debris flows sources.
Resumo:
There are wide variations in the threshold used to define in vitro resistance of Plasmodium falciparum to amodiaquine (AQ), probably due to differences in methodology and interpretation. In vitro susceptibility data of Colombian P. falciparum strains to AQ and N-desethylamodiaquine is used to illustrate the need to standardized methodologies and compare inhibitory concentrations, instead of resistant/susceptible phenotypes, when studying the mechanisms of resistance to AQ and monitoring drug susceptibility trends in the field.
Resumo:
The susceptibility of Anopheles aquasalis (F3 generation) and An. darlingi (F1 generation) to Plasmodium vivax circumsporozoite protein phenotypes from a limited number of blood samples of malaria patients in Belém, state of Pará, Brazil, was examined. A polymerase chain reaction was used to determine the P. vivax phenotypes in blood samples and the blood-fed infected mosquitoes were dissected and tested by ELISA. In all patient infections, more infected An. aquasalis and An. darlingi were positive for VK210 compared with VK247.
Resumo:
Resistance and susceptibility to infection with the intracellular parasite, Leishmania major, are mediated by parasite-specific CD4+ Th1 and Th2 cells, respectively. It is well established that the protective effect of parasite-specific CD4+ Th1 cells is largely dependent upon the IFN-gamma produced. However, recent results indicate that the effect of Th1 cells on resolution of lesions induced by L. major in genetically resistant mice also requires a functional Fas-FasL pathway of cytotoxicity. In contrast to resistant mice, susceptible BALB/c mice develop aberrant Th2 responses following infection with L. major and consequently suffer progressive disease. These outcomes clearly depends upon the production of interleukin 4 (IL-4) early after infection. We have shown that a burst of IL-4 mRNA, peaking in draining lymph nodes of BALB/c mice 16 hrs after infection, occurs within CD4+ T cells that express V beta 4-V alpha 8 T cell receptors. In contrast to control and V beta 6-deficient mice, V beta 4-deficient BALB/c mice were resistant to infection, demonstrating the role of these cells in Th2 development. The early IL-4 response was absent in these mice, and Th1 responses occurred following infection. The LACK antigen of L. major induced comparable IL-4 production in V beta 4-V alpha 8 CD4+ T cells. Thus, the IL-4 required for Th2 development and susceptibility to L. major is produced by a restricted population of V beta 4-V alpha 8 CD4+ T cells after cognate interaction with a single antigen from this complex parasite. The IL-4 produced rapidly by these CD4+ T cells induces within 48 hours a state of unresponsiveness to IL-12 among parasite-specific CD4+ T cell precursors by downregulating the IL-12 receptor beta 2 chain expression.
Resumo:
A total of 187 isolates from several clinical specimens were identified to species level as 129 Staphylococcus aureus strains and 58 coagulase-negative staphylococci (CNS) strains by the API Staph System (Biomerieux). Slime production was detected both by the conventional Christensen's method as well as by the Congo red agar method. Seventy-two strains of staphylococci isolates (38.5%) were found to be slime producers by Christensen's test tube method whereas 58 strains (31%) were slime positive with Congo red agar method. There was no statistically significant difference between the two methods for the detection of slime production (P > 0.05). Susceptibility of isolates against antimicrobial agents was tested by the disk diffusion method. Staphylococcal species had resistance to one or more antibiotics. Among the various antimicrobial agents, oxacillin (71.1%) and erythromycin (47.1%) showed higher resistance than most of the agents used against all isolates. Oxacillin resistant S. aureus (ORSA) and oxacillin resistant coagulase-negative staphylococci (ORCNS), 97 (75.2%) and 36 (62.1%) respectively were frequently observed in strains isolated from clinical materials. Among the ORSA strains, two strains were resistant to vancomycin. Moreover, 96 (74.4%) of 129 S. aureus strains were positive for blactamase enzyme. However, 78 (81.25%) of 96 b-lactamase positive S. aureus strains were b-lactamase positive ORSA isolates, but none of them had vancomycin resistance.
Resumo:
The protein sequence deduced from the open reading frame of a human placental cDNA encoding a cAMP-responsive enhancer (CRE)-binding protein (CREB-327) has structural features characteristic of several other transcriptional transactivator proteins including jun, fos, C/EBP, myc, and CRE-BP1. Results of Southwestern analysis of nuclear extracts from several different cell lines show that there are multiple CRE-binding proteins, which vary in size in cell lines derived from different tissues and animal species. To examine the molecular diversity of CREB-327 and related proteins at the nucleic acid level, we used labeled cDNAs from human placenta that encode two different CRE-binding proteins (CREB-327 and CRE-BP1) to probe Northern and Southern blots. Both probes hybridized to multiple fragments on Southern blots of genomic DNA from various species. Alternatively, when a human placental c-jun probe was hybridized to the same blot, a single fragment was detected in most cases, consistent with the intronless nature of the human c-jun gene. The CREB-327 probe hybridized to multiple mRNAs, derived from human placenta, ranging in size from 2-9 kilobases. In contrast, the CRE-BP1 probe identified a single 4-kilobase mRNA. Sequence analyses of several overlapping human genomic cosmid clones containing CREB-327 sequences in conjunction with polymerase chain reaction indicates that the CREB-327/341 cDNAs are composed of at least eight or nine exons, and analyses of human placental cDNAs provide direct evidence for at least one alternatively spliced exon. Analyses of mouse/hamster-human hybridoma DNAs by Southern blotting and polymerase chain reaction localizes the CREB-327/341 gene to human chromosome 2. The results indicate that there is a dichotomy of CREB-like proteins, those that are related by overall structure and DNA-binding specificity as well as those that are related by close similarities of primary sequences.
Resumo:
BALB/c mice develop aberrant T helper 2 (Th2) responses and suffer progressive disease after infection with Leishmania major. These outcomes depend on the production of interleukin-4 (IL-4) early after infection. Here we demonstrate that the burst of IL-4 mRNA, peaking in draining lymph nodes of BALB/c mice 16 hr after infection, occurs within CD4+ T cells that express V beta 4 V alpha 8 T cell receptors. In contrast to control and V beta 6-deficient BALB/c mice, V beta 4-deficient BALB/c mice were resistant to infection, demonstrating the role of these cells in Th2 development. The early IL-4 response was absent in these mice, and T helper 1 responses occurred following infection. Recombinant LACK antigen from L. major induced comparable IL-4 production in V beta 4 V alpha 8 CD4+ cells. Thus, the IL-4 required for Th2 development and susceptibility to L. major is produced by a restricted population of V beta 4 V alpha 8 CD4+ T cells after cognate interaction with a single antigen from this complex organism.
Resumo:
The TNF-related apoptosis inducing ligand (TRAIL)/TRAIL receptor system participates in crucial steps in immune cell activation or differentiation. It is able to inhibit proliferation and activation of T cells and to induce apoptosis of neurons and oligodendrocytes, and seems to be implicated in autoimmune diseases. Thus, TRAIL and TRAIL receptor genes are potential candidates for involvement in susceptibility to multiple sclerosis (MS). To test whether single-nucleotide polymorphisms (SNPs) in the human genes encoding TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 are associated with MS susceptibility, we performed a candidate gene case-control study in the Spanish population. 59 SNPs in the TRAIL and TRAIL receptor genes were analysed in 628 MS patients and 660 controls, and validated in an additional cohort of 295 MS patients and 233 controls. Despite none of the SNPs withstood the highly conservative Bonferroni correction, three SNPs showing uncorrected p values<0.05 were successfully replicated: rs4894559 in TRAIL gene, p = 9.8×10(-4), OR = 1.34; rs4872077, in TRAILR-1 gene, p = 0.005, OR = 1.72; and rs1001793 in TRAILR-2 gene, p = 0.012, OR = 0.84. The combination of the alleles G/T/A in these SNPs appears to be associated with a reduced risk of developing MS (p = 2.12×10(-5), OR = 0.59). These results suggest that genes of the TRAIL/TRAIL receptor system exerts a genetic influence on MS.
Resumo:
Background: A functional polymorphism located at 21 from the start codon of the CD40 gene, rs1883832, was previously reported to disrupt a Kozak sequence essential for translation. It has been consistently associated with Graves’ disease risk in populations of different ethnicity and genetic proxies of this variant evaluated in genome-wide association studies have shown evidence of an effect in rheumatoid arthritis and multiple sclerosis (MS) susceptibility. However, the protective allele associated with Graves’ disease or rheumatoid arthritis has shown a risk role in MS, an effect that we aimed to replicate in the present work. We hypothesized that this functional polymorphism might also show an association with other complex autoimmune condition such as inflammatory bowel disease, given the CD40 overexpression previously observed in Crohn’s disease (CD) lesions. Methodology: Genotyping of rs1883832C.T was performed in 1564 MS, 1102 CD and 969 ulcerative colitis (UC) Spanish patients and in 2948 ethnically matched controls by TaqMan chemistry. Principal Findings: The observed effect of the minor allele rs1883832T was replicated in our independent Spanish MS cohort [p= 0.025; OR (95% CI)= 1.12 (1.01–1.23)]. The frequency of the minor allele was also significantly higher in CD patients than in controls [p= 0.002; OR (95% CI)= 1.19 (1.06–1.33)]. This increased predisposition was not detected in UC patients [p= 0.5; OR (95% CI)= 1.04 (0.93–1.17)]. Conclusion: The impact of CD40 rs1883832 on MS and CD risk points to a common signaling shared by these autoimmune conditions
Resumo:
Highly evolved rhyolite glass plus near-solidus mineral assemblages in voluminous, dacitic, crystal-rich ignimbrites provide an opportunity to evaluate the late magmatic evolution of granodiorite batholiths. This study reports laser-ablation ICP-MS analyses of trace element concentrations in feldspars, hornblende, biotite, titanite, zircon, magnetite, and interstitial glass of the crystal-rich Fish Canyon Tuff. The high-silica rhyolite glass is characterized by relatively high concentrations of feldspar-compatible elements (e.g., 100 ppm Sr and 500 ppm Ba) and low concentrations of Y (< 7 ppm) and HREE (&SIM; 1 ppm Yb), hence high LREE/HREE (Ce/Yb > 40) compared to many well-studied high-silica rhyolite glasses and whole-rock compositions. Most minerals record some trace element heterogeneities, with, in particular, one large hornblende phenocryst showing four- to six-fold core-to-rim increases in Sr and Ba coupled with a decrease in Sc. The depletions of Y and HREE in the Fish Canyon glass relative to the whole-rock composition (concentrations in glass &SIM; 30% of those in whole rocks) reflect late crystallization of phases wherein these elements were compatible. As garnet is not stable at the low-P conditions at which the Fish Canyon magma crystallized, we show that a combination of modally abundant hornblende (&SIM; 4%) + titanite (&SIM; 0.5-1%) and the highly polymerized nature of the rhyolitic liquid led to Y and HREE depletions in melt. Relatively high Sr and Ba contents in glass and rimward Sr and Ba increases in euhedral, concentrically zoned hornblende suggest partial feldspar dissolution and a late release of these elements to the melt as hornblende was crystallizing, in agreement with textural evidence for feldspar (and quartz) resorption. Both observations are consistent with thermal rejuvenation of the magma body prior to eruption, during which the proportion of melt increased via feldspar and quartz dissolution, even as hydrous and accessory phases were crystallizing. Sr/Y in Fish Canyon glass (13-18) is lower than the typical ``adakitic'' value (> 40), confirming that high Sr/Y is a reliable indicator of high-pressure magma generation and/or differentiation wherein garnet is implicated.
Resumo:
We conducted a cross-sectional, hospital-based study between January 2006-March 2008 to estimate the resistance of Mycobacterium tuberculosis to first-line drugs in patients with tuberculosis at a Brazilian hospital. We evaluated the performance of the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (MTT) microplate assay compared with the Bactec-MGIT 960 system for mycobacteria testing. The prevalence of resistance in M. tuberculosis was 6.7%. Multidrug-resistance [resistance to rifampicin (RMP) and isoniazid (INH)], INH-resistance and streptomycin (SM)-resistance accounted for 1%, 3.8% and 3.8% of all resistance, respectively, and all isolates were susceptible to ethambutol (EM). The resistance was primary in four cases and acquired in three cases and previous treatment was associated with resistance (p = 0.0129). Among the 119 M. tuberculosis isolates, complete concordance of the results for INH and EM was observed between the MTT microplate and Bactec-MGIT 960TM methods. The observed agreement for RMP was 99% (sensitivity: 90%) and 95.8% for SM (sensitivity 90.9%), lower than those for other drugs. The MTT colourimetric method is an accurate, simple and low-cost alternative in settings with limited resources.
Resumo:
A total of 138 isolates, 118 methicillin-resistant Staphylococcus aureus (MRSA) isolates (staphylococcal cassette chromosome type II, 20 isolates, type III, 39 isolates and type IV, 59 isolates) and 20 methicillin-sensitive S. aureus isolates were evaluated by phenotypic methods: cefoxitin and oxacillin disk diffusion (DD), agar dilution (AD), latex agglutination (LA), oxacillin agar screening (OAS) and chromogenic agar detection. All methods showed 100% specificity, but only the DD tests presented 100% sensitivity. The sensitivity of the other tests ranged from 82.2% (OAS)-98.3% (AD). The LA test showed the second lowest sensitivity (86.4%). The DD test showed high accuracy in the detection of MRSA isolates, but there was low precision in the detection of type IV isolates by the other tests, indicating that the genotypic characteristics of the isolates should be considered.
Resumo:
Nine colonies of five sibling species members of Anopheles barbirostris complexes were experimentally infected with Plasmodium falciparum and Plasmodium vivax. They were then dissected eight and 14 days after feeding for oocyst and sporozoite rates, respectively, and compared with Anopheles cracens. The results revealed that Anopheles campestris-like Forms E (Chiang Mai) and F (Udon Thani) as well as An. barbirostris species A3 and A4 were non-potential vectors for P. falciparum because 0% oocyst rates were obtained, in comparison to the 86.67-100% oocyst rates recovered from An. cracens. Likewise, An. campestris-like Forms E (Sa Kaeo) and F (Ayuttaya), as well as An. barbirostris species A4, were non-potential vectors for P. vivax because 0% sporozoite rates were obtained, in comparison to the 85.71-92.31% sporozoite rates recovered from An. cracens. An. barbirostris species A1, A2 and A3 were low potential vectors for P. vivax because 9.09%, 6.67% and 11.76% sporozoite rates were obtained, respectively, in comparison to the 85.71-92.31% sporozoite rates recovered from An. cracens. An. campestris-like Forms B and E (Chiang Mai) were high-potential vectors for P. vivax because 66.67% and 64.29% sporozoite rates were obtained, respectively, in comparison to 90% sporozoite rates recovered from An. cracens.
Resumo:
Drug resistance is one of the principal obstacles blocking worldwide malaria control. In Colombia, malaria remains a major public health concern and drug-resistant parasites have been reported. In vitro drug susceptibility assays are a useful tool for monitoring the emergence and spread of drug-resistant Plasmodium falciparum. The present study was conducted as a proof of concept for an antimalarial drug resistance surveillance network based on in vitro susceptibility testing in Colombia. Sentinel laboratories were set up in three malaria endemic areas. The enzyme linked immunosorbent assay-histidine rich protein 2 and schizont maturation methods were used to assess the susceptibility of fresh P. falciparum isolates to six antimalarial drugs. This study demonstrates that an antimalarial drug resistance surveillance network based on in vitro methods is feasible in the field with the participation of a research institute, local health institutions and universities. It could also serve as a model for a regional surveillance network. Preliminary susceptibility results showed widespread chloroquine resistance, which was consistent with previous reports for the Pacific region. However, high susceptibility to dihydroartemisinin and lumefantrine compounds, currently used for treatment in the country, was also reported. The implementation process identified critical points and opportunities for the improvement of network sustainability strategies.