670 resultados para Osmotic Downshock
Resumo:
Experimental measurements of density at different temperatures ranging from 293.15 to 313.15 K, the speed of sound and osmotic coefficients at 298.15 K for aqueous solution of 1-ethyl-3-methylimidazolium bromide ([Emim][Br]), and osmotic coefficients at 298.15 K for aqueous solutions of 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) in the dilute concentration region are taken. The data are used to obtain compressibilities, expansivity, apparent and limiting molar properties, internal pressure, activity, and activity coefficients for [Emim][Br] in aqueous solutions. Experimental activity coefficient data are compared with that obtained from Debye-Hückel and Pitzer models. The activity data are further used to obtain the hydration number and the osmotic second virial coefficients of ionic liquids. Partial molar entropies of [Bmim][Cl] are also obtained using the free-energy and enthalpy data. The distance of the closest approach of ions is estimated using the activity data for ILs in aqueous solutions and is compared with that of X-ray data analysis in the solid phase. The measured data show that the concentration dependence for aqueous solutions of [Emim][Br] can be accounted for in terms of the hydrophobic hydration of ions and that this IL exhibits Coulombic interactions as well as hydrophobic hydration for both the cations and anions. The small hydration numbers for the studied ILs indicate that the low charge density of cations and their hydrophobic nature is responsible for the formation of the water-structure-enforced ion pairs.
Resumo:
In arid regions, biodiversity and biomass are limited by water availability, and this problem has been compounded by desertification associated with global climate change. The saprotrophic macrofungi that are indigenous to hot subtropical and tropical regions, such as Pleurotus spp., can play key roles in water sequestration, nutrient cycling, human nutrition, and bioremediation of waste materials. We studied 15 strains of Pleurotus sajor-caju, a widespread and phenotypically-diverse species, to establish variability in growth response and primordium development over a range of stress parameters: osmotic potential (-0.5 to -5 MPa), temperature (5-40 degrees C) and pH (2-12). The initiation of primordia precedes basidiome production and therefore represents a key stage in bioremediation strategies and fungi-driven nutrient cycles. Primordia were produced at low pH (4-6), at suboptimal growth temperatures (<or =25 degrees C), and under moderate water stress (-0.5 to -3.5 MPa). Although the growth windows for different strains were similar, their maximum growth rates and the optimum conditions for growth varied. We discuss the phenotypic diversity of Pleurotus strains and discuss their potential for cultivation, bioremediation and ecological regeneration.
Resumo:
A range of malts, as well as their high- and low-molecular-mass fractions, has been examined by capillary electrophoresis in phosphate buffer, pH 2.5, and in carbonate buffer, pH 9.5, and the results have been compared with those for roasted barley and for caramels. The malts fall into two categories: (i) the lightly roasted malts, where the high-molecular-mass coloured fraction is negatively charged at pH 9.5 and positively charged at pH 2.5; and (ii) the highly roasted malts (and the roasted barley), where the high-molecular-mass fraction migrates close to the electro-osmotic flow at both pH 9.5 and 2.5, implying that it carries little or no charge. The former category shows migration patterns similar to Class III caramels, whereas the latter migrates differently from Class I, III and IV caramels as well as from the former. Capillary electrophoresis therefore has considerable potential for differentiating between malts and between malts and caramels and roasted barley. (C) 2002 Society of Chemical Industry.
Resumo:
Ubiquitous noxious hydrophobic substances, such as hydrocarbons, pesticides and diverse industrial chemicals, stress biological systems and thereby affect their ability to mediate biosphere functions like element and energy cycling vital to biosphere health. Such chemically diverse compounds may have distinct toxic activities for cellular systems; they may also share a common mechanism of stress induction mediated by their hydrophobicity. We hypothesized that the stressful effects of, and cellular adaptations to, hydrophobic stressors operate at the level of water : macromolecule interactions. Here, we present evidence that: (i) hydrocarbons reduce structural interactions within and between cellular macromolecules, (ii) organic compatible solutes-metabolites that protect against osmotic and chaotrope-induced stresses-ameliorate this effect, (iii) toxic hydrophobic substances induce a potent form of water stress in macromolecular and cellular systems, and (iv) the stress mechanism of, and cellular responses to, hydrophobic substances are remarkably similar to those associated with chaotrope-induced water stress. These findings suggest that it may be possible to devise new interventions for microbial processes in both natural environments and industrial reactors to expand microbial tolerance of hydrophobic substances, and hence the biotic windows for such processes.
Resumo:
Burkholderia cenocepacia is an opportunistic pathogen causing serious infections in patients with cystic fibrosis. The widespread distribution of this bacterium in the environment suggests that it must adapt to stress to be able to survive. We identified in B. cenocepacia K56-2 a gene predicted to encode RpoE, the extra-cytoplasmic stress response regulator. The rpoE gene is the first gene of a predicted operon encoding proteins homologous to RseA, RseB, MucD and a protein of unknown function. The genomic organization and the co-transcription of these genes were confirmed by PCR and RT-PCR. The mucD and rpoE genes were mutated, giving rise to B. cenocepacia RSF24 and RSF25, respectively. While mutant RSF24 did not demonstrate any growth defects under the conditions tested, RSF25 was compromised for growth under temperature (44 degrees C) and osmotic stress (426 mM NaCl). Expression of RpoE in trans could complement the osmotic growth defect but exacerbated temperature sensitivity in both RSF25 and wild-type K56-2. Inactivation of rpoE altered the bacterial cell surface, as indicated by increased binding of the fluorescent dye calcofluor white and by an altered outer-membrane protein profile. These cell surface changes were restored by complementation with a plasmid encoding rpoE. Macrophage infections in which bacterial colocalization with fluorescent dextran was examined demonstrated that the rpoE mutant could not delay the fusion of B. cenocepacia-containing vacuoles with lysosomes, in contrast to the parental strain K56-2. These data show that B. cenocepacia rpoE is required for bacterial growth under certain stress conditions and for the ability of intracellular bacteria to delay phagolysosomal fusion in macrophages.
Resumo:
High ambient glucose activates intracellular signaling pathways to induce the expression of extracellular matrix and cytokines such as connective tissue growth factor (CTGF). Cell responses to CTGF in already glucose-stressed cells may act to transform the mesangial cell phenotype leading to the development of glomerulosclerosis. We analyzed cell signaling downstream of CTGF in high glucose-stressed mesangial cells to model signaling in the diabetic milieu. The addition of CTGF to primary human mesangial cells activates cell migration which is associated with a PKC-zeta-GSK3beta signaling axis. In high ambient glucose basal PKC-zeta and GSK3beta phosphorylation levels are selectively increased and CTGF-stimulated PKC-zeta and GSK3beta phosphorylation was impaired. These effects were not induced by osmotic changes. CTGF-driven profibrotic cell signaling as determined by p42/44 MAPK and Akt phosphorylation was unaffected by high glucose. Nonresponsiveness of the PKC-zeta-GSK3beta signaling axis suppressed effective remodeling of the microtubule network necessary to support cell migration. However, interestingly the cells remain plastic: modulation of glucose-induced PKC-beta activity in human mesangial cells reversed some of the pathological effects of glucose damage in these cells. We show that inhibition of PKC-beta with LY379196 and PKC-beta siRNA reduced basal PKC-zeta and GSK3beta phosphorylation in human mesangial cells exposed to high glucose. CTGF stimulation under these conditions again resulted in PKC-zeta phosphorylation and human mesangial cell migration. Regulation of PKC-zeta by PKC-beta in this instance may establish PKC-zeta as a target for constraining the progression of mesangial cell dysfunction in the pathogenesis of diabetic nephropathy.
Resumo:
Three isolates each, of nine different Trametes and five other wood inhabiting basidiomycetes, were collected from the indigenous forests of Zimbabwe, and the impact of temperature (20-60 degrees C), osmotic and matric potential (-0.5 to - 8.0 MPa), and their interactions on in vitro growth compared. Generally, there was no significant difference between growth of isolates of the same species in relation to temperature. Temperature relationships of the species studied correlated well with their geographic distributions. Species occurring in hot, dry regions tolerated a wide temperature range, with some showing unusually high thermotolerance (55 degrees, T. socotrana, T. cingulata and T. cervina). There were significant intra-strain differences for individual species in relation to solute potential on glycerol-modified media. Generally, growth of ail species was better on glycerol- and KCl-modified osmotic media than on a metrically-modified medium (PEG 8000) at 25, 30 and 37 degrees. The limits for growth on the osmotic media were significantly wider than matric medium, being - 4.5 to - 5.0 and - 2.5 to - 4.5 MPa, respectively. An Irpex sp. grew at lower water potentials than all other species, with good growth at - 7.0 MPa. This study suggests that the capacity of these fungi for effective growth over a range of temperatures, osmotic and matric potentials contributes to their rapid wood decay capacities in tropical climates.
Resumo:
Cell loss and regeneration were investigated and compared in the retinal microvasculature of age- and sex-matched normal and streptozotocin diabetic rats. Selective pericyte loss in the diabetic rat was characterized by changes in the pericyte to endothelial cell ratio in retinal capillaries isolated for microscopy by the trypsin digest technique. A comparison of 3- and 9-month-old normal rats showed no significant change in the pericyte to endothelial cell ratio (1:2.7). In diabetic animals the ratio was reduced to 1:4.03, which was statistically significant (P less than .001). Premitotic retinal vascular cells in normal and diabetic rats were labelled with tritiated thymidine and the labelling indices calculated from cell counts of trypsin digest preparations. Methyl H3 thymidine was infused continuously over an eight-day period using osmotic mini pumps. The labelling index of endothelial cells (0.33%) in normal rats increased to 0.91% in diabetic animals (P less than .05). The labelling index of pericyte cells in normal animals (0.16%) did not increase significantly (P greater than .05) in diabetic animals (0.19%). A special stain was used to exclude labelled polymorphonuclear leukocytes from the cell counts.
Resumo:
Hyperglycemia may contribute directly to pericyte loss and capillary leakage in early diabetic retinopathy. To elucidate relative contributions of glycation, glycoxidation, sugar autoxidation, osmotic stress and metabolic effects in glucose-mediated capillary damage, we tested the effects of D-glucose, L-glucose, mannitol and the potentially protective effects of aminoguanidine on cultured bovine retinal capillary pericytes and endothelial cells. Media (containing 5 mM D-glucose) were supplemented to increase the concentration of each sugar by 5, 10, or 20 mM. Subconfluent pericytes and endothelial cells were exposed to the supplemented media in the presence or absence of aminoguanidine (1 nM-100 µM) for three days. Cell counts, viability and protein were determined. For both cell types, all three sugars produced concentration-dependent decreases in cell counts and protein content (p
Resumo:
Daily and seasonal variations in physiological characteristics of mammals can be considered adaptations to temporal habitat variables. Across different ecosystems, physiological adjustments are expected to be sensitive to different environmental signals such as changes in photoperiod, temperature or water and food availability; the relative importance of a particular signal being dependent on the ecosystem in question. Energy intake, oxygen consumption (VO) and body temperature (T) daily rhythms were compared between two populations of the broad-toothed field mouse Apodemus mystacinus, one from a Mediterranean and another from a sub-Alpine ecosystem. Mice were acclimated to short-day (SD) 'winter' and long-day (LD) 'summer' photoperiods under different levels of salinity simulating osmotic challenges. Mediterranean mice had higher VO values than sub-Alpine mice. In addition, mice exposed to short days had higher VO values when given water with a high salinity compared with mice exposed to long days. By comparison, across both populations, increasing salinity resulted in a decreased T in SD- but not in LD-mice. Thus, SD-mice may conserve energy by decreasing T during ('winter') conditions which are expected to be cool, whereas LD-mice might do the opposite and maintain a higher T during ('summer') conditions which are expected to be warm. LD-mice behaved to reduce energy expenditure, which might be considered a useful trait during 'summer' conditions. Overall, increasing salinity was a clear signal for Mediterranean-mice with resultant effects on VO and T daily rhythms but had less of an effect on sub-Alpine mice, which were more responsive to changes in photoperiod. Results provide an insight into how different populations respond physiologically to various environmental challenges.
Resumo:
The water activity (a(w)) of microbial substrates, biological samples, and foods and drinks is usually determined by direct measurement of the equilibrium relative humidity above a sample. However, these materials can contain ethanol, which disrupts the operation of humidity sensors. Previously, an indirect and problematic technique based on freezing-point depression measurements was needed to calculate the a(w) when ethanol was present. We now describe a rapid and accurate method to determine the a(w) of ethanol-containing samples at ambient temperatures. Disruption of sensor measurements was minimized by using a newly developed, alcohol-resistant humidity sensor fitted with an alcohol filter. Linear equations were derived from a(w) measurements of standard ethanol-water mixtures, and from Norrish's equation, to correct sensor measurements. To our knowledge, this is the first time that electronic sensors have been used to determine the a(w) of ethanol- containing samples.
Resumo:
Fungal growth inhibition by ethanol was compared with that caused by five other agents of water stress (at 25, 40 and 42.5°C), using Aspergillus oryzae. Ethanol, KCl, glycerol, glucose, sorbitol, and polyethylene glycol 400 were incorporated into media at concentrations corresponding to water activity (a(w)) values in the range 1 to 0.75. Generally, as temperature increased there was a decrease in the a(w) value at which optimum growth occurred. The a(w) limit for growth on KCl, glycerol, glucose, sorbitol, or polyethylene glycol 400 media was about 0.85, regardless of temperature. However, the a(w) limit for growth on ethanol media varied between 0.97 and 0.99 a(w) and was temperature-dependent. Water stress accounted for up to 31, 18 and 6% of growth inhibition by ethanol at 25, 40, and 42.5°C, respectively. For media containing ethanol, the decrease in growth rate per unit of a(w) reduction was greater as temperature increased. However, ethanol-induced water stress remained constant regardless of temperature, suggesting that other inhibitory effects of ethanol are closely temperature- dependent. Water stress may account for considerably more than 30% of growth inhibition by ethanol in cells that remain metabolically active at higher ethanol concentrations.
Resumo:
This review considers the effect of ethanol-induced water stress on yeast metabolism and integrity. Ethanol causes water stress by lowering water activity (a(w)) and thereby interferes with hydrogen bonding within and between hydrated cell components, ultimately disrupting enzyme and membrane strut and function. The impact of ethanol on the energetic status of water is considered in relation to cell metabolism. Even moderate ethanol concentrations (5 to 10%, w/v) cause a sufficient reduction of a(w) to have metabolic consequences. When exposed to ethanol, cells synthesize compatible solutes such as glycerol and trehalose that protect against water stress and hydrogen-bond disruption. Ethanol affects the control of gene expression by the mechanism that is normally associated with (so-called) osmotic control. Furthermore, ethanol-induced water stress has ecological implications.
Resumo:
The entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosus were cultured on solid agar media containing different carbohydrate components (glycerol, glucose, trehalose or starch) at concentrations of ≤ 142.7 g added carbon 1-1 for 30 d at 25°C. The water activity (a(w)) of the media ranged from 0.925 to 0.998. Growth of M. anisopliae and P. farinosus was stimulated between 0.975 and 0.995 a(w) on glucose media and that of P. farinosus at 0. 975 a(w) on glycerol media. At < 0.970 a(w), growth of each fungal species was significantly reduced (P < 0.05). Polyhydroxy alcohols (polyols) and trehalose were extracted from conidia produced on different media and quantified using HPLC. Total polyol content of conidia produced on glucose media varied between 5.2 and 52.2 mg g-1 for B. bassiana, 77.3 and 90.3 mg g-1 for M. anisopliae, and 26.7 and 76.1 mg g-1 for P. farinosus. The amounts of specific polyols in conidia varied significantly from media of different glucose concentrations. Mannitol was the predominant polyol in conidia of all three species, with conidia of M. anisopliae, for example, containing as much as 75.2 mg mannitol g-1 when cultured on glucose media. The amount of the lower molecular mass polyols glycerol and erythritol was greater in conidia produced on glucose media with > 50.0 g added carbon 1-1 than that in conidia produced at lower glucose concentrations. Conidia contained between 10.8 and 20.8 mg glycerol plus erythritol g-1 on glucose media with 142.7 g added carbon 1-1, depending on species. Conversely, conidia of B. bassiana and P. farinosus contained maximum amounts of trehalose ( ≤ 23.5 mg g-1) when produced on glucose media with < 50.0 g added carbon l-1, and trehalose content was considerably less at higher glucose concentrations. There were accumulations of glycerol and erythritol in conidia of all three species when grown on glycerol media with > 25.0 g added carbon 1-1; conidia of B. bassiana contained up to 154.0 mg glycerol plus erythritol g-1. hen B. bassiana and P. farinosus were grown on trehalose media, conidia contained up to 222.1 mg trehalose g-1. By contrast, conidia of M. anisopliae contained < 17.0 mg trehalose g-1 under all conditions tested. The water availability of solutions of different polyols is discussed in relation to their potential to act in osmotic adjustment during germination. The ability to manipulate polyol and trehalose content of fungal propagules may be critical in enhancing the storage life and efficacy of biological control agents.
Resumo:
The deletion of the gene encoding the glycerol facilitator Fps1p was associated with an altered plasma membrane lipid composition in Saccharomyces cerevisiae. The S. cerevisiae fps1delta strain respectively contained 18 and 26% less ergosterol than the wild-type strain, at the whole-cell level and at the plasma membrane level. Other mutants with deficiencies in glycerol metabolism were studied to investigate any possible link between membrane ergosterol content and intracellular glycerol accumulation. In these mutants a modification in intracellular glycerol concentration, or in intra- to extracellular glycerol ratio was accompanied by a reduction in plasma membrane ergosterol content. However, there was no direct correlation between ergosterol content and intracellular glycerol concentration. Lipid composition influences the membrane permeability for solutes during adaptation of yeast cells to osmotic stress. In this study, ergosterol supplementation was shown to partially suppress the hypo-osmotic sensitivity phenotype of the fps1delta strain, leading to more efficient glycerol efflux, and improved survival. The erg-1 disruption mutant, which is unable to synthesise ergosterol, survived and recovered from the hypo-osmotic shock more successfully when the concentration of exogenously supplied ergosterol was increased. The results obtained suggest that a higher ergosterol content facilitates the flux of glycerol across the plasma membrane of S. cerevisiae cells.