733 resultados para Oscillators, Sweep
Resumo:
Nanodendritic Pd is electrodeposited on poly(3,4-ethylenedioxythiophene) (PEDOT) coated carbon paper electrode. Electrodeposited Pd is non-dendritic in the absence of PEDOT. The electrooxidation of C-3-aliphatic alcohols, namely, propanol (PA), 1,2- propanediol (1, 2-PD), 1, 3-propanediol (1, 3-PD), and glycerol (GL) is studied in 1.0 M NaOH. The catalytic activity of nanodendritic Pd is greater than that of non-dendritic Pd for oxidation of the four alcohols molecules. Among those molecules the oxidation rate increases as: PA< 1, 2-PD < 1, 3-PD < GL. The cyclic voltammetric oxidation current peak appearing in the reverse direction of the sweep is greatly influenced by the nature of alcohol. The reduction of oxide film on Pd surface is attributed to affect the magnitude of backward peak current density. The amperometry and repeated cyclic voltammetry data suggest a high stability of nanodendritic Pd in alkaline medium. Glycerol is expected to be an appropriate alcohol for application as a fuel in alkaline fuel cells at nanodendritic electrodeposited Pd.
Resumo:
We report ferromagnetic resonance (FMR) study on a grid formed with permalloy nanowires to understand the spin wave dynamics. The presence of two sets of magnetic nanowires perpendicular to each other in the same device enables better control over spin waves. The grid was fabricated using e-beam lithography followed by DC-Magnetron sputtering and liftoff technique. It has dimensions of 800 +/- 10 and 400 +/- 10 nm as periods along X and Y directions with permalloy wires of width 145 +/- 10 nm. FMR studies were done at X-band (9.4 GHz) with the field sweep up to 1 Tesla. The in-plane angular variation of resonant fields shows that there are two well separated modes present, indicating two uniaxial anisotropy axes which are perpendicular to each other. The variation in the intensities in the FMR signal w.r.t. the grid angle is used to describe the spin wave confinement in different regions of the grid. We also explained the asymmetry in the magnetic properties caused by the geometrical property of the rectangular grid and the origin for the peak splitting for the modes occurring at higher resonant fields. Micromagnetic simulations based on OOMMF with two dimensional periodic boundary conditions (2D-PBC) are used to support our experimental findings.
Resumo:
Lamins are intermediate filament proteins of type V constituting a nuclear lamina or filamentous meshwork which lines the nucleoplasmic side of the inner nuclear membrane. This protein mesh provides a supporting scaffold for the nuclear envelope and tethers interphase chromosome to the nuclear periphery. Mutations of mainly A-type lamins are found to be causative for at least 11 human diseases collectively termed as laminopathies majority of which are characterised by aberrant nuclei with altered structural rigidity, deformability and poor mechanotransduction behaviour. But the investigation of viscoelastic behavior of lamin A continues to elude the field. In order to address this problem, we hereby present the very first report on viscoelastic properties of wild type human lamin A and some of its mutants linked with Dilated cardiomyopathy (DCM) using quantitative rheological measurements. We observed a dramatic strain-softening effect on lamin A network as an outcome of the strain amplitude sweep measurements which could arise from the large compliance of the quasi-cross-links in the network or that of the lamin A rods. In addition, the drastic stiffening of the differential elastic moduli on superposition of rotational and oscillatory shear stress reflect the increase in the stiffness of the laterally associated lamin A rods. These findings present a preliminary insight into distinct biomechanical properties of wild type lamin A protein and its mutants which in turn revealed interesting differences.
Resumo:
The design and implementation of a morphing Micro Air Vehicle (MAV) wing using a smart composite is attempted in this research work. Control surfaces actuated by traditional servos are difficult to instrument and fabricate on thin composite-wings of MAVs. Piezoelectric Fiber Reinforced Composites (PFRCs) are the chosen smart structural materials in the current work for incorporation onto fixed-wing MAVs to simultaneously perform the dual functions of structural load-bearing and actuation of flexure, torsion and/or extension for morphing. Further, PFRC use can be extended towards shape control of a “fixed” wing MAV to meet changing performance requirements. Wings that can warp into desired shapes and/or have variable camber are well-known to exhibit improved efficiency in aerodynamic control. During an entire flight cycle, there are multiple optimal configurations, each of which suits a particular phase of the flight regime. Widely proposed methods of wing morphing include changes in camber, twist, sweep and span. However, camber change during flight is already established, in terms of its potential, as a major factor in improving the aerofoil efficiency and flow separation behavior. Hence, for this work, morphing with camber change is adopted with the goal to better tailor aerodynamic properties.
Resumo:
The current work addresses the use of producer gas, a bio-derived gaseous alternative fuel, in engines designed for natural gas, derived from diesel engine frames. Impact of the use of producer gas on the general engine performance with specific focus on turbo-charging is addressed. The operation of a particular engine frame with diesel, natural gas and producer gas indicates that the peak load achieved is highest with diesel fuel (in compression ignition mode) followed by natural gas and producer gas (both in spark ignite mode). Detailed analysis of the engine power de-rating on fuelling with natural gas and producer gas indicates that the change in compression ratio (migration from compression to spark ignited mode), difference in mixture calorific value and turbocharger mismatch are the primary contributing factors. The largest de-rating occurs due to turbocharger mismatch. Turbocharger selection and optimization is identified as the strategy to recover the non-thermodynamic power loss, identified as the recovery potential (the loss due to mixture calorific value and turbocharger mismatch) on operating the engine with a fuel different from the base fuel. A turbocharged after-cooled six cylinder, 5.9 l, 90 kWe (diesel rating) engine (12.2 bar BMEP) is available commercially as a naturally aspirated natural gas engine delivering a peak load of 44.0 kWe (6.0 bar BMEP). The engine delivers a load of 27.3 kWe with producer gas under naturally aspirated mode. On charge boosting the engine with a turbocharger similar in configuration to the diesel engine turbocharger, the peak load delivered with producer gas is 36 kWe (4.8 bar BMEP) indicating a de-rating of about 60% over the baseline diesel mode. Estimation of knock limited peak load for producer gas-fuelled operation on the engine frame using a Wiebe function-based zero-dimensional code indicates a knock limited peak load of 76 kWe, indicating the potential to recover about 40 kWe. As a part of the recovery strategy, optimizing the ignition timing for maximum brake torque based on both spark sweep tests and established combustion descriptors and engine-turbocharger matching for producer gas-fuelled operation resulted in a knock limited peak load of 72.8 kWe (9.9 bar BMEP) at a compressor pressure ratio of 2.30. The de-rating of about 17.0 kWe compared to diesel rating is attributed to the reduction in compression ratio. With load recovery, the specific biomass consumption reduces from 1.2 kg/kWh to 1.0 kg/kWh, an improvement of over 16% while the engine thermal efficiency increases from 28% to 32%. The thermodynamic analysis of the compressor and the turbine indicates an isentropic efficiency of 74.5% and 73%, respectively.
Resumo:
We model the spread of information in a homogeneously mixed population using the Maki Thompson rumor model. We formulate an optimal control problem, from the perspective of single campaigner, to maximize the spread of information when the campaign budget is fixed. Control signals, such as advertising in the mass media, attempt to convert ignorants and stiflers into spreaders. We show the existence of a solution to the optimal control problem when the campaigning incurs non-linear costs under the isoperimetric budget constraint. The solution employs Pontryagin's Minimum Principle and a modified version of forward backward sweep technique for numerical computation to accommodate the isoperimetric budget constraint. The techniques developed in this paper are general and can be applied to similar optimal control problems in other areas. We have allowed the spreading rate of the information epidemic to vary over the campaign duration to model practical situations when the interest level of the population in the subject of the campaign changes with time. The shape of the optimal control signal is studied for different model parameters and spreading rate profiles. We have also studied the variation of the optimal campaigning costs with respect to various model parameters. Results indicate that, for some model parameters, significant improvements can be achieved by the optimal strategy compared to the static control strategy. The static strategy respects the same budget constraint as the optimal strategy and has a constant value throughout the campaign horizon. This work finds application in election and social awareness campaigns, product advertising, movie promotion and crowdfunding campaigns. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A discrete-time dynamics of a non-Markovian random walker is analyzed using a minimal model where memory of the past drives the present dynamics. In recent work N. Kumar et al., Phys. Rev. E 82, 021101 (2010)] we proposed a model that exhibits asymptotic superdiffusion, normal diffusion, and subdiffusion with the sweep of a single parameter. Here we propose an even simpler model, with minimal options for the walker: either move forward or stay at rest. We show that this model can also give rise to diffusive, subdiffusive, and superdiffusive dynamics at long times as a single parameter is varied. We show that in order to have subdiffusive dynamics, the memory of the rest states must be perfectly correlated with the present dynamics. We show explicitly that if this condition is not satisfied in a unidirectional walk, the dynamics is only either diffusive or superdiffusive (but not subdiffusive) at long times.
Resumo:
A new global stochastic search, guided mainly through derivative-free directional information computable from the sample statistical moments of the design variables within a Monte Carlo setup, is proposed. The search is aided by imparting to the directional update term additional layers of random perturbations referred to as `coalescence' and `scrambling'. A selection step, constituting yet another avenue for random perturbation, completes the global search. The direction-driven nature of the search is manifest in the local extremization and coalescence components, which are posed as martingale problems that yield gain-like update terms upon discretization. As anticipated and numerically demonstrated, to a limited extent, against the problem of parameter recovery given the chaotic response histories of a couple of nonlinear oscillators, the proposed method appears to offer a more rational, more accurate and faster alternative to most available evolutionary schemes, prominently the particle swarm optimization. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Antisite disorder is observed to have significant impact on the magnetic properties of the double perovskite Y2CoMnO6 which has been recently identified as a multiferroic. A paramagnetic-ferromagnetic phase transition occurs in this material at T-c approximate to 75 K. At 2K, it displays a strong ferromagnetic hysteresis with a significant coercive field of H-c approximate to 15 kOe. Sharp steps are observed in the hysteresis curves recorded below 8K. In the temperature range 2K <= T <= 5K, the hysteresis loops are anomalous as the virgin curve lies outside the main loop. The field-cooling conditions as well as the rate of field-sweep are found to influence the steps. Quantitative analysis of the neutron diffraction data shows that at room temperature, Y2CoMnO6 consists of 62% of monoclinic P2(1)/n with nearly 70% antisite disorder and 38% Pnma. The bond valence sums indicate the presence of other valence states for Co and Mn which arise from disorder. We explain the origin of steps by using a model for pinning of magnetization at the antiphase boundaries created by antisite disorder. The steps in magnetization closely resemble the martensitic transformations found in intermetallics and display first-order characteristics as revealed in the Arrott's plots. (C) 2014 AIP Publishing LLC.
Resumo:
Resonant sensors and crystal oscillators for mass detection need to be excited at very high natural frequencies (MHz). Use of such systems to measure mass of biological materials affects the accuracy of mass measurement due to their viscous and/or viscoelastic properties. The measurement limitation of such sensor system is the difficulty in accounting for the ``missing mass'' of the biological specimen in question. A sensor system has been developed in this work, to be operated in the stiffness controlled region at very low frequencies as compared to its fundamental natural frequency. The resulting reduction in the sensitivity due to non-resonant mode of operation of this sensor is compensated by the high resolution of the sensor. The mass of different aged drosophila melanogaster (fruit fly) is measured. The difference in its mass measurement during resonant mode of operation is also presented. That, viscosity effects do not affect the working of this non-resonant mass sensor is clearly established by direct comparison. (C) 2014 AIP Publishing LLC.
Resumo:
Thermally induced demixing in an LCST mixture, polystyrene (PS)/polyvinyl methyl ether] (PVME), was used as a template to design materials with high electrical conductivity. This was facilitated by gelation of multiwall carbon nanotubes (MWNTs) in a given phase of the blends. The MWNTs were mixed in the miscible blends and the thermodynamic driven demixing further resulted in selective localization in the PVME phase of the blends. This was further confirmed by atomic force microscopy (AFM). The time dependent gelation of MWNTs at shallow quench depth, evaluated using isochronal temperature sweep by rheology, was studied by monitoring the melt electrical conductivity of the samples in situ by an LCR meter coupled to a rheometer. By varying the composition in the mixture, several intricate shapes like gaskets and also coatings capable of attenuating the EM radiation in the microwave frequency can be derived. For instance, the PVME rich mixtures can be molded in the form of a gasket, O-ring and other intricate shapes while the PS rich mixtures can be coated onto an insulating polymer to enhance the shielding effectiveness (SE) for EM radiation. The SE of the various materials was analyzed using a vector network analyzer in both the X-band (8.2 to 12 GHz) and the K-u-band (12 to 18 GHz) frequency. The improved SE upon gelation of MWNTs in the demixed blends is well evident by comparing the SE before and after demixing. A reflection loss of -35 dB was observed in the blends with 2 wt% MWNTs. Further, by coating a layer of ca. 0.15 mm of PS/PVME/MWNT, a SE of -15 dB at 18 GHz could be obtained.
Resumo:
A discrete vortex method-based model has been proposed for two-dimensional/three-dimensional ground-effect prediction. The model merely requires two-dimensional sectional aerodynamics in free flight. This free-flight data can be obtained either from experiments or a high-fidelity computational fluid dynamics solver. The first step of this two-step model involves a constrained optimization procedure that modifies the vortex distribution on the camber line as obtained from a discrete vortex method to match the free-flight data from experiments/computational fluid dynamics. In the second step, the vortex distribution thus obtained is further modified to account for the presence of the ground plane within a discrete vortex method-based framework. Whereas the predictability of the lift appears as a natural extension, the drag predictability within a potential flow framework is achieved through the introduction of what are referred to as drag panels. The need for the use of the generalized Kutta-Joukowski theorem is emphasized. The extension of the model to three dimensions is by the way of using the numerical lifting-line theory that allows for wing sweep. The model is extensively validated for both two-dimensional and three-dimensional ground-effect studies. The work also demonstrates the ability of the model to predict lift and drag coefficients of a high-lift wing in ground effect to about 2 and 8% accuracy, respectively, as compared to the results obtained using a Reynolds-averaged Navier-Stokes solver involving grids with several million volumes. The model shows a lot of promise in design, particularly during the early phase.
Resumo:
Co3O4 and Co3O4/MWCNTs were prepared by hydrothermal process under autogenous pressure in Teflon lined autoclave and calcined at 250 degrees C. Both samples were characterized by PXRD, FT-IR, SEM-EDS, TEM & FT-Raman to evaluate their surface and bulk properties. The PXRD pattern of the materials indicated the formation of cubic phase of Co3O4. FT-IR results showed the presence of metal oxygen bond in the samples. The SEM and TEM images of the Co3O4 / MWCNTs indicated spherical and cubic aggregates of metal oxide particles (10-30 nm) decorated both on the surface and inside the tubes of carbon nanotubes. The characteristic Ig and Id (graphitic and defects) Raman bands indicated the retention of tubular structure of MWCNTs even after the deposition of Co3O4. The calcined Co3O4-MWCNTs composites and Co3O4 exhibited specific capacitance of 284 & 205 F/g at a sweep rate of 2mVs(-1) in 6M KOH by cyclic voltammetry. The psuedocapacitance performances of calcined Co3O4-MWCNTs were found to be better than Co3O4. Chronopotentiometric studies made for the materials at a current density of 500mA/g indicated 100% columbic efficiency at 2000th cycle for Co3O4/ MWCNTs which is a better electrode material than Co3O4.
Resumo:
The demixing behavior, transient morphologies and mechanism of phase separation in PS/PVME blends were greatly altered in the presence of a very low concentration of rod-like particles (multiwall carbon nanotubes, MWNTs). This phenomenon is due to the specific interaction of one of the phases (PVME) with the anisotropic MWNTs, which creates a heterogeneous environment in the blend. This specific interaction alters the chain dynamics in the interfacial region as against the bulk. A comprehensive analysis using isochronal temperature sweep was performed to understand the demixing temperature in the blends. The evolution of phase morphology as a function of time and temperature was assessed by polarizing optical microscopy (POM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The addition of MWNTs increased the rheological demixing temperature and the spinodal temperature in almost all the compositions. The intriguing transient morphologies were mapped, which varied from nucleation and growth to coalescence-induced viscoelastic phase separation (C-VPS) in PVME-rich blends, to spinodal decomposition in the near-critical compositions, to transient gel-induced VPS (T-VPS) in the PS-rich compositions. Mapping of the morphology development displayed two types of fracture mechanisms: ductile fracture for near-critical compositions and brittle fracture for off-critical composition. The change in the phase separation mechanism in the presence of MWNTs was due to the variation in dynamic asymmetry brought about by these anisotropic particles. All these observations were correlated by POM, SEM and AFM studies. The length of the cooperatively rearranging region (CRR), as evaluated using modulated differential scanning calorimetry (MDSC) measurements, was found to be composition-independent. The observed variation of effective glass transition of PVME (low T-g component) on blending with PS (high Tg component) and by the addition of MWNTs accounts for the dynamic heterogeneity introduced by MWNTs in the system.
Resumo:
A method to weakly correct the solutions of stochastically driven nonlinear dynamical systems, herein numerically approximated through the Eule-Maruyama (EM) time-marching map, is proposed. An essential feature of the method is a change of measures that aims at rendering the EM-approximated solution measurable with respect to the filtration generated by an appropriately defined error process. Using Ito's formula and adopting a Monte Carlo (MC) setup, it is shown that the correction term may be additively applied to the realizations of the numerically integrated trajectories. Numerical evidence, presently gathered via applications of the proposed method to a few nonlinear mechanical oscillators and a semi-discrete form of a 1-D Burger's equation, lends credence to the remarkably improved numerical accuracy of the corrected solutions even with relatively large time step sizes. (C) 2015 Elsevier Inc. All rights reserved.