922 resultados para Oryza sativa


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Informacoes tecnicas sobre a possibilidade de cultivo de graos (arroz, feijao, milho e soja) no Estado do Amazonas (Brasil).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A cultivar Aliança é do tipo arroz irrigado, indicada para os estados de MT, MS, ES, GO e TO. Seu ciclo de maturação gira em torno de 145 dias; produção média é de 6.503 Kg/ha.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Com o objetivo de conseguir material genético capaz de solucionar os principais problemas da cultura do arroz no Acre, vem sendo desenvolvido pela Embrapa/UEPAE de Rio Branco, um trabalho de avaliação de germoplasmas de arroz, sob a coordenação do Centro Nacional de Pesquisa de Arroz e Feijão.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El objetivo de esta tesis fue contribuir a la dilucidación de los mecanismos moleculares y genéticos que participan en la expresión de la dormición de semillas de cereales, utilizando Sorghum bicolor (L.) Moench como sistema modelo. Para ello se utilizaron dos aproximaciones complementarias: la identificación de QTL para el carácter dormición y la evaluación de la ocurrencia de interacciones in vitro entre componentes de la señalización del ácido abscísico (ABA) y el catabolismo de las giberelinas (GAs), candidatos a tener un rol importante durante la expresión de la dormición en granos de sorgo inmaduros (i.e. antes de madurez fisiológica). Los resultados obtenidos permitieron identificar tres QTL (qDOR-5; qDOR-9 y qDOR-10) que explican una proporción de la variabilidad que se observa en el patrón de expresión de dormición de granos de sorgo maduros (i.e. después de madurez fisiológica). Un análisis in silico de las secuencias abarcadas por estos QTL mostró que ninguno ellos incluye genes considerados como candidatos para dormición de sorgo. En ese sentido, esta tesis aportó nuevas regiones genómicas que contienen genes hasta ahora desconocidos, que serían importantes en la expresión del carácter dormición en granos maduros. Por otra parte, los análisis de unión in vitro realizados mostraron que las proteínas SbABI4 y SbABI5 (componentes de la señalización del ABA) pueden interactuar de manera específica con el ABRC (complejo de respuesta al ABA) del promotor del gen SbGA2ox3, responsable de la degradación de giberelinas activas. Este mecanismo de cross-talk ABA-GAs podría ser uno de los responsables del mantenimiento de la dormición en cariopses inmaduros resistentes al brotado pre-cosecha. Más aún, el ABRC del promotor de SbGA2ox3, involucrado en las interacciones, se encontró además en los promotores de genes GA2ox de otras especies monocotiledóneas como Brachypodium y arroz (Oryza sativa), pero no así en las dicotiledóneas analizadas, sugiriendo que el cross-talk ABA-GAs podría tener lugar en otras especies además de sorgo. Los resultados de esta tesis en forma conjunta aportaron nuevas evidencias acerca del rol preponderante que tienen ciertas regiones del genoma o genes puntuales en la expresión de la dormición tanto en granos maduros como inmaduros de sorgo granífero.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El objetivo de esta tesis fue contribuir a la dilucidación de los mecanismos moleculares y genéticos que participan en la expresión de la dormición de semillas de cereales, utilizando Sorghum bicolor (L.)Moench como sistema modelo. Para ello se utilizaron dos aproximaciones complementarias: la identificación de QTL para el carácter dormición y la evaluación de la ocurrencia de interacciones in vitro entre componentes de la señalización del ácido abscísico (ABA)y el catabolismo de las giberelinas (GAs), candidatos a tener un rol importante durante la expresión de la dormición en granos de sorgo inmaduros (i.e. antes de madurez fisiológica). Los resultados obtenidos permitieron identificar tres QTL (qDOR-5; qDOR-9 y qDOR-10)que explican una proporción de la variabilidad que se observa en el patrón de expresión de dormición de granos de sorgo maduros (i.e. después de madurez fisiológica). Un análisis in silico de las secuencias abarcadas por estos QTL mostró que ninguno ellos incluye genes considerados como candidatos para dormición de sorgo. En ese sentido, esta tesis aportó nuevas regiones genómicas que contienen genes hasta ahora desconocidos, que serían importantes en la expresión del carácter dormición en granos maduros. Por otra parte, los análisis de unión in vitro realizados mostraron que las proteínas SbABI4 y SbABI5 (componentes de la señalización del ABA)pueden interactuar de manera específica con el ABRC (complejo de respuesta al ABA)del promotor del gen SbGA2ox3, responsable de la degradación de giberelinas activas. Este mecanismo de cross-talk ABA-GAs podría ser uno de los responsables del mantenimiento de la dormición en cariopses inmaduros resistentes al brotado pre-cosecha. Más aún, el ABRC del promotor de SbGA2ox3, involucrado en las interacciones, se encontró además en los promotores de genes GA2ox de otras especies monocotiledóneas como Brachypodium y arroz (Oryza sativa), pero no así en las dicotiledóneas analizadas, sugiriendo que el cross-talk ABA-GAs podría tener lugar en otras especies además de sorgo. Los resultados de esta tesis en forma conjunta aportaron nuevas evidencias acerca del rol preponderante que tienen ciertas regiones del genoma o genes puntuales en la expresión de la dormición tanto en granos maduros como inmaduros de sorgo granífero.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

About 100 million rural people in Asia are exposed to arsenic (As)-polluted drinking water and agricultural products. Total and inorganic arsenic (t-As and i-As) intake mainly depend on the quality of drinking and cooking waters, and amounts of seafood and rice consumed. The main problems occur in countries with poor water quality where the population depends on rice for their diet, and their t-As and i-As intake is high as a result of growing and cooking rice in contaminated water. Workable solutions to remove As from water and breeding rice cultivars with low As accumulation are being sought. In the meantime, simple recommendations for processing and cooking foods will help to reduce As intake. For instance, cooking using high volumes of As-free water may be a cheap way of reducing As exposure in rural populations. It is necessary to consider the effects of cooking and processing on t-As and i-As to obtain a realistic view of the risks associated with intake of As in Asendemic areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arsenic (As) is an environmental and food chain contaminant. Excessive accumulation of As, particularly inorganic arsenic (As(i)), in rice (Oryza sativa) poses a potential health risk to populations with high rice consumption. Rice is efficient at As accumulation owing to flooded paddy cultivation that leads to arsenite mobilization, and the inadvertent yet efficient uptake of arsenite through the silicon transport pathway. Iron, phosphorus, sulfur, and silicon interact strongly with As during its route from soil to plants. Plants take up arsenate through the phosphate transporters, and arsenite and undissociated methylated As species through the nodulin 26-like intrinsic (NIP) aquaporin channels. Arsenate is readily reduced to arsenite in planta, which is detoxified by complexation with thiol-rich peptides such as phytochelatins and/or vacuolar sequestration. A range of mitigation methods, from agronomic measures and plant breeding to genetic modification, may be employed to reduce As uptake by food crops.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dimethylarsinic acid (DMA). To investigate how As species are unloaded into grain rice, panicles were excised during grain filling and hydroponically pulsed with arsenite, arsenate, glutathione-complexed As, or DMA. Total As concentrations in flag leaf, grain, and husk, were quantified by inductively coupled plasma mass spectroscopy and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy. The roles of phloem and xylem transport were investigated by applying a +/- stem-girdling treatment to a second set of panicles, limiting phloem transport to the grain in panicles pulsed with arsenite or DMA. The results demonstrate that DMA is translocated to the rice grain with over an order magnitude greater efficiency than inorganic species and is more mobile than arsenite in both the phloem and the xylem. Phloem transport accounted for 90% of arsenite, and 55% of DMA, transport to the grain. Synchrotron x-ray fluorescence mapping and fluorescence microtomography revealed marked differences in the pattern of As unloading into the grain between DMA and arsenite-challenged grain. Arsenite was retained in the ovular vascular trace and DMA dispersed throughout the external grain parts and into the endosperm. This study also demonstrates that DMA speciation is altered in planta, potentially through complexation with thiols.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Paddy rice has been likened to nictiana sp in its ability to scavenge cadmium (Cd) from soil, whereas arsenic (As) accumulation is commonly an order of magnitude higher than in other cereal crops. In areas such as those found in parts of Hunan province in south central China, base-metal mining activities and rice farming coexist. Therefore there is a considerable likelihood that lead (Pb), in addition to Cd and As, will accumulate in rice grown in parts of this region above levels suitable for human consumption. To test this hypothesis, a widespread provincial survey of rice from mine spoilt paddies (n = 100), in addition to a follow-up market grain survey (n = 122) conducted in mine impacted areas was undertaken to determine the safety of local rice supply networks. Furthermore, a specific Cd, As, and Pb biogeochemical survey of paddy soil and rice was conducted within southern China, targeting sites impacted by mining of varying intensities to calibrate rice metal(loid) transfer models and transfer factors that can be used to predict tissue loading. Results revealed a number of highly significant correlations between shoot, husk, bran, and endosperm rice tissue fractions and that rice from mining areas was enriched in Cd, As, and Pb. Sixty-five, 50, and 34% of all the mine-impacted field rice was predicted to fail national food standards for Cd, As, and Pb, respectively. Although, not as elevated as the grains from the mine-impacted field survey, it was demonstrated that metal(loid) tainted rice was entering food supply chains intended for direct human consumption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arsenic (As) is an element that is nonessential for and toxic to plants. Arsenic contamination in the environment occurs in many regions, and, depending on environmental factors, its accumulation in food crops may pose a health risk to humans.Recent progress in understanding the mechanisms of As uptake and metabolism in plants is reviewed here. Arsenate is taken up by phosphate transporters. A number of the aquaporin nodulin26-like intrinsic proteins (NIPs) are able to transport arsenite,the predominant form of As in reducing environments. In rice (Oryza sativa), arsenite uptake shares the highly efficient silicon (Si) pathway of entry to root cells and efflux towards the xylem. In root cells arsenate is rapidly reduced to arsenite, which is effluxed to the external medium, complexed by thiol peptides or translocated to shoots. One type of arsenate reductase has been identified, but its in planta functions remain to be investigated. Some fern species in the Pteridaceae family are able to hyperaccumulate As in above-ground tissues. Hyperaccumulation appears to involve enhanced arsenate uptake, decreased arsenite-thiol complexation and arsenite efflux to the external medium, greatly enhanced xylem translocation of arsenite, and vacuolar sequestration of arsenite in fronds. Current knowledge gaps and future research directions are also identified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rice is more elevated in arsenic than all other grain crops tested to date, with whole grain (brown) rice having higher arsenic levels than polished (white). It is reported here that rice bran, both commercially purchased and specifically milled for this study, have levels of inorganic arsenic, a nonthreshold, class 1 carcinogen, reaching concentrations of approximately 1 mg/kg dry weight, around 10-20 fold higher than concentrations found in bulk grain. Although pure rice bran is used as a health food supplement, perhaps of more concern is rice bran solubles, which are marketed as a superfood and as a supplement to malnourished children in international aid programs. Five rice bran solubles products were tested, sourced from the United States and Japan, and were found to have 0.61-1.9 mg/kg inorganic arsenic. Manufactures recommend approximately 20 g servings of the rice bran solubles per day, which equates to a 0.012-0.038 mg intake of inorganic arsenic. There are no maximum concentration levels (MCLs) set for arsenic or its species in food stuffs. EU and U.S. water regulations, set at 0.01 mg/L total or inorganic arsenic, respectively, are based on the assumption that 1 L of water per day is consumed, i.e., 0.01 mg of arsenic/ day. At the manufacturers recommended rice bran solubles consumption rate, inorganic arsenic intake exceeds 0.01 mg/ day, remembering that rice bran solubles are targeted at malnourished children and that actual risk is based on mg kg(-1) day(-1) intake.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A field survey was conducted in arsenic impacted and non-impacted paddies of Bangladesh to assess how arsenic levels in rice (Oryza sativa L) grain are related to soil and shoot concentrations. Ten field sites from an arsenic contaminated tubewell irrigation region (Faridpur) were compared to 10 field sites from a non-affected region (Gazipur). Analysis of the overall data set found that both grain and shoot total arsenic concentrations were highly correlated (P

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rice (Oryza sativa) varieties that are arsenate-tolerant (Bala) and -sensitive (Azucena) were used to conduct a transcriptome analysis of the response of rice seedlings to sodium arsenate (AsV) in hydroponic solution. RNA extracted from the roots of three replicate experiments of plants grown for 1 week in phosphate-free nutrient with or without 13.3 muM AsV was used to challenge the Affymetrix (52K) GeneChip Rice Genome array. A total of 576 probe sets were significantly up-regulated at least 2-fold in both varieties, whereas 622 were down-regulated. Ontological classification is presented. As expected, a large number of transcription factors, stress proteins, and transporters demonstrated differential expression. Striking is the lack of response of classic oxidative stress-responsive genes or phytochelatin synthases/synthatases. However, the large number of responses from genes involved in glutathione synthesis, metabolism, and transport suggests that glutathione conjugation and arsenate methylation may be important biochemical responses to arsenate challenge. In this report, no attempt is made to dissect differences in the response of the tolerant and sensitive variety, but analysis in a companion article will link gene expression to the known tolerance loci available in the BalaxAzucena mapping population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, the genetic mapping of the tolerance of root growth to 13.3 muM arsenate [As(V)] using the BalaxAzucena population is improved, and candidate genes for further study are identified. A remarkable three-gene model of tolerance is advanced, which appears to involve epistatic interaction between three major genes, two on chromosome 6 and one on chromosome 10. Any combination of two of these genes inherited from the tolerant parent leads to the plant having tolerance. Lists of potential positional candidate genes are presented. These are then refined using whole genome transcriptomics data and bioinformatics. Physiological evidence is also provided that genes related to phosphate transport are unlikely to be behind the genetic loci conferring tolerance. These results offer testable hypotheses for genes related to As(V) tolerance that might offer strategies for mitigating arsenic (As) accumulation in consumed rice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arsenic contaminated groundwater is used extensively in Bangladesh to irrigate the staple food of the region, paddy rice (Oryza sativa L.). To determine if this irrigation has led to a buildup of arsenic levels in paddy fields, and the consequences for arsenic exposure through rice ingestion, a survey of arsenic levels in paddy soils and rice grain was undertaken. Survey of paddy soils throughout Bangladesh showed that arsenic levels were elevated in zones where arsenic in groundwater used for irrigation was high, and where these tube-wells have been in operation for the longest period of time. Regression of soil arsenic levels with tube-well age was significant. Arsenic levels reached 46 microg g(-1) dry weight in the most affected zone, compared to levels below l0 microg g(-1) in areas with low levels of arsenic in the groundwater. Arsenic levels in rice grain from an area of Bangladesh with low levels of arsenic in groundwaters and in paddy soils showed that levels were typical of other regions of the world. Modeling determined, even these typical grain arsenic levels contributed considerably to arsenic ingestion when drinking water contained the elevated quantity of 0.1 mg L(-1). Arsenic levels in rice can be further elevated in rice growing on arsenic contaminated soils, potentially greatly increasing arsenic exposure of the Bangladesh population. Rice grain grown in the regions where arsenic is building up in the soil had high arsenic concentrations, with three rice grain samples having levels above 1.7 microg g(-1).