989 resultados para Orthogonal Activation Functions
Resumo:
Vertebrate limb tendons are derived from connective cells of the lateral plate mesoderm. Some of the developmental steps leading to the formation of vertebrate limb tendons have been previously identified; however, the molecular mechanisms responsible for tendinous patterning and maintenance during embryogenesis are largely unknown. The eyes absent (eya) gene of Drosophila encodes a novel nuclear protein of unknown molecular function. Here we show that Eya1 and Eya2, two mouse homologues of Drosophila eya, are expressed initially during limb development in connective tissue precursor cells. Later in limb development, Eya1 and Eya2 expression is associated with cell condensations that form different sets of limb tendons. Eya1 expression is largely restricted to flexor tendons, while Eya2 is expressed in the extensor tendons and ligaments of the phalangeal elements of the limb. These data suggest that Eya genes participate in the patterning of the distal tendons of the limb. To investigate the molecular functions of the Eya gene products, we have analyzed whether the highly divergent PST (proline-serine-threonine)-rich N-terminal regions of Eya1–3 function as transactivation domains. Our results demonstrate that Eya gene products can act as transcriptional activators, and they support a role for this molecular function in connective tissue patterning.
Resumo:
The nematode Caenorhabditis elegans exhibits behavioral responses to many volatile odorants. Chemotaxis toward one such odorant, diacetyl (butanedione), requires the function of a seven-transmembrane receptor protein encoded by the odr-10 gene. To determine directly whether ODR-10 protein is an odorant receptor, it is necessary to express the protein in a heterologous system and show that it responds to diacetyl by activation of a G protein signaling pathway. Here we demonstrate that human cells expressing ODR-10 on their surfaces exhibit a transient elevation in intracellular Ca2+ levels after diacetyl application. Volatile compounds that differ from diacetyl only by the addition of a methyl group (2,3-pentanedione) or the absence of a keto group (butanone) are not ODR-10 agonists. Behavioral responses to these compounds are not dependent on odr-10 function, so ODR-10 specificity in human cells resembles in vivo specificity. The apparent affinity of ODR-10 for diacetyl observed in human cells is consistent with the diacetyl concentration ranges that allow efficient nematode chemotaxis. ODR-10 expressed in human cells also responds to two anionic compounds, pyruvate and citrate, which are metabolic precursors used for diacetyl production by certain bacterial species. Ca2+ elevation in response to ODR-10 activation is due to release from intracellular stores.
Resumo:
The human type VII collagen gene (COL7A1) recently has been identified as an immediate-early response gene for transforming growth factor β (TGF-β)/SMAD signaling pathway. In this study, by using MDA-MB-468 SMAD4−/− breast carcinoma cells, we demonstrate that expression of SMAD4 is an absolute requirement for SMAD-mediated promoter activity. We also demonstrate that the SMAD binding sequence (SBS) representing the TGF-β response element in the region −496/−444 of the COL7A1 promoter functions as an enhancer in the context of a heterologous promoter. Electrophoretic mobility-shift assays with nuclear extracts from COS-1 cells transfected with expression vectors for SMADs 1–5 indicate that SMAD3 forms a complex with a migration similar to that of the endogenous TGF-β-specific complex observed in fibroblast extracts. Electrophoretic mobility-shift assays using recombinant glutathione S-transferase-SMAD fusion proteins indicate that both SMAD4 and C-terminally truncated SMAD3, but not SMAD2, can bind the COL7A1 SBS. Coexpression of SMAD3 and SMAD4 in COS-1 cells leads to the formation of two complexes: a DNA/protein complex containing SMAD3 alone and another slower-migrating complex containing both SMAD3 and SMAD4, the latter complex not being detected in fibroblasts. Maximal transactivation of COL7A1 SBS-driven promoters in either MDA-MB-468 carcinoma cells or fibroblasts requires concomitant overexpression of SMAD3 and SMAD4. These data may represent the first identification of a functional homomeric SMAD3 complex regulating a human gene.
Resumo:
Steroidogenic factor 1 (SF-1), an orphan member of the intracellular receptor superfamily, plays an essential role in the development and function of multiple endocrine organs. It is expressed in all steroidogenic tissues where it regulates the P450 steroidogenic genes to generate physiologically active steroids. Although many of the functions of SF-1 in vivo have been defined, an unresolved question is whether a ligand modulates its transcriptional activity. Here, we show that 25-, 26-, or 27-hydroxycholesterol, known suppressors of cholesterol biosynthesis, enhance SF-1-dependent transcriptional activity. This activation is dependent upon the SF-1 activation function domain, and, is specific for SF-1 as several other receptors do not respond to these molecules. The oxysterols activate at concentrations comparable to those previously shown to inhibit cholesterol biosynthesis, and, can be derived from cholesterol by P450c27, an enzyme expressed within steroidogenic tissues. Recent studies have shown that the nuclear receptor LXR also is activated by oxysterols. We demonstrate that different oxysterols differ in their rank order potency for these two receptors, with 25-hydroxycholesterol preferentially activating SF-1 and 22(R)-hydroxycholesterol preferentially activating LXR. These results suggest that specific oxysterols may mediate transcriptional activation via different intracellular receptors. Finally, ligand-dependent transactivation of SF-1 by oxysterols may play an important role in enhancing steroidogenesis in vivo.
Resumo:
In Drosophila, the chromosomal region 75C1–2 contains at least three genes, reaper (rpr), head involution defective (hid), and grim, that have important functions in the activation of programmed cell death. To better understand how cells are killed by these genes, we have utilized a well defined set of embryonic central nervous system midline cells that normally exhibit a specific pattern of glial cell death. In this study we show that both rpr and hid are expressed in dying midline cells and that the normal pattern of midline cell death requires the function of multiple genes in the 75C1–2 interval. We also utilized the P[UAS]/P[Gal4] system to target expression of rpr and hid to midline cells. Targeted expression of rpr or hid alone was not sufficient to induce ectopic midline cell death. However, expression of both rpr and hid together rapidly induced ectopic midline cell death that resulted in axon scaffold defects characteristic of mutants with abnormal midline cell development. Midline-targeted expression of the baculovirus p35 protein, a caspase inhibitor, blocked both normal and ectopic rpr- and hid-induced cell death. Taken together, our results suggest that rpr and hid are expressed together and cooperate to induce programmed cell death during development of the central nervous system midline.
Resumo:
Dopamine is a neuromodulator involved in the control of key physiological functions. Dopamine-dependent signal transduction is activated through the interaction with membrane receptors of the seven-transmembrane domain G protein-coupled family. Among them, dopamine D2 receptor is highly expressed in the striatum and the pituitary gland as well as by mesencephalic dopaminergic neurons. Lack of D2 receptors in mice leads to a locomotor parkinsonian-like phenotype and to pituitary tumors. The D2 receptor promoter has characteristics of a housekeeping gene. However, the restricted expression of this gene to particular neurons and cells points to a strict regulation of its expression by cell-specific transcription factors. We demonstrate here that the D2 receptor promoter contains a functional retinoic acid response element. Furthermore, analysis of retinoic acid receptor-null mice supports our finding and shows that in these animals D2 receptor expression is reduced. This finding assigns to retinoids an important role in the control of gene expression in the central nervous system.
Resumo:
Calreticulin (CRT) is a high-capacity, low-affinity Ca2+-binding protein located in the lumen of the endoplasmic reticulum (ER) of all eukaryotic cells investigated so far. Its high level of conservation among different species suggests that it serves functions fundamental to cell survival. The role originally proposed for CRT, i.e., the main Ca2+ buffer of the ER, has been obscured or even casted by its implication in processes as diverse as gene expression, protein folding, and cell adhesion. In this work we seek the role of CRT in Ca2+ storing and signaling by evaluating its effects on the kinetics and amplitude of the store-operated Ca2+ current (ICRAC). We show that, in the rat basophilic leukemia cell line RBL-1, overexpression of CRT, but not of its mutant lacking the high-capacity Ca2+-binding domain, markedly retards the ICRAC development, however, only when store depletion is slower than the rate of current activation. On the contrary, when store depletion is rapid and complete, overexpression of CRT has no effect. The present results are compatible with a major Ca2+-buffering role of CRT within the ER but exclude a direct, or indirect, role of this protein on the mechanism of ICRAC activation.
Resumo:
Adhesion to ECM is required for many cell functions including cytoskeletal organization, migration, and proliferation. We observed that when cells first adhere to extracellular matrix, they spread rapidly by extending filopodia-like projections and lamellipodia. These structures are similar to the Rac- and Cdc42-dependent structures observed in growth factor-stimulated cells. We therefore investigated the involvement of Rac and Cdc42 in adhesion and spreading on the ECM protein fibronectin. We found that integrin-dependent adhesion led to the rapid activation of p21-activated kinase, a downstream effector of Cdc42 and Rac, suggesting that integrins activate at least one of these GTPases. Dominant negative mutants of Rac and Cdc42 inhibit cell spreading in such a way as to suggest that integrins activate Cdc42, which leads to the subsequent activation of Rac; both GTPases then contribute to cell spreading. These results demonstrate that initial integrin-dependent activation of Rac and Cdc42 mediates cell spreading.
Resumo:
IFNγ, once called the macrophage-activating factor, stimulates many genes in macrophages, ultimately leading to the elicitation of innate immunity. IFNγ's functions depend on the activation of STAT1, which stimulates transcription of IFNγ-inducible genes through the GAS element. The IFN consensus sequence binding protein (icsbγ or IFN regulatory factor 8), encoding a transcription factor of the IFN regulatory factor family, is one of such IFNγ-inducible genes in macrophages. We found that macrophages from ICSBP−/− mice were defective in inducing some IFNγ-responsive genes, even though they were capable of activating STAT1 in response to IFNγ. Accordingly, IFNγ activation of luciferase reporters fused to the GAS element was severely impaired in ICSBP−/− macrophages, but transfection of ICSBP resulted in marked stimulation of these reporters. Consistent with its role in activating IFNγ-responsive promoters, ICSBP stimulated reporter activity in a GAS-specific manner, even in the absence of IFNγ treatment, and in STAT1 negative cells. Indicative of a mechanism for this stimulation, DNA affinity binding assays revealed that endogenous ICSBP was recruited to a multiprotein complex that bound to GAS. These results suggest that ICSBP, when induced by IFNγ through STAT1, in turn generates a second wave of transcription from GAS-containing promoters, thereby contributing to the elicitation of IFNγ's unique activities in immune cells.
Resumo:
While effector molecules produced by activated macrophages (including nitric oxide, tumor necrosis factor α, interleukin 1, etc.) help to eliminate pathogens, high levels of these molecules can be deleterious to the host itself. Despite their importance, the mechanisms modulating macrophage effector functions are poorly understood. This work introduces two key negative regulators that control the levels and duration of macrophage cytokine production. Vacuolar-type H+-ATPase (V-ATPase) and calcineurin (Cn) constitutively act in normal macrophages to suppress expression of inflammatory cytokines in the absence of specific activation and to inhibit macrophage cytokine responses induced by bacterial lipopolysaccharide (V-ATPase), interferon γ (V-ATPase and Cn), and calcium (Ca2+) flux (Cn). Cn and V-ATPase modulate effector gene expression at the mRNA level by inhibiting transcription factor NF-κB. This negative regulation by Cn is opposite to its crucial positive role in T cells, where it activates NFAT transcription factor(s) leading to expression of interleukin 2, tumor necrosis factor α, and other cytokine genes. The negative effects of V-ATPase and Cn on NF-κB-dependent gene expression are not limited to the macrophage lineage, as similar effects have been seen with a murine fibroblast cell line and with primary astrocytes.
Resumo:
In addition to their well-known functions in cellular energy transduction, mitochondria play an important role in modulating the amplitude and time course of intracellular Ca2+ signals. In many cells, mitochondria act as Ca2+ buffers by taking up and releasing Ca2+, but this simple buffering action by itself often cannot explain the organelle's effects on Ca2+ signaling dynamics. Here we describe the functional interaction of mitochondria with store-operated Ca2+ channels in T lymphocytes as a mechanism of mitochondrial Ca2+ signaling. In Jurkat T cells with functional mitochondria, prolonged depletion of Ca2+ stores causes sustained activation of the store-operated Ca2+ current, ICRAC (CRAC, Ca2+ release-activated Ca2+). Inhibition of mitochondrial Ca2+ uptake by compounds that dissipate the intramitochondrial potential unmasks Ca2+-dependent inactivation of ICRAC. Thus, functional mitochondria are required to maintain CRAC-channel activity, most likely by preventing local Ca2+ accumulation near sites that govern channel inactivation. In cells stimulated through the T-cell antigen receptor, acute blockade of mitochondrial Ca2+ uptake inhibits the nuclear translocation of the transcription factor NFAT in parallel with CRAC channel activity and [Ca2+]i elevation, indicating a functional link between mitochondrial regulation of ICRAC and T-cell activation. These results demonstrate a role for mitochondria in controlling Ca2+ channel activity and signal transmission from the plasma membrane to the nucleus.
Resumo:
STAT (signal transducer and activator of transcription) proteins are latent cytoplasmic transcription factors that become activated by tyrosine phosphorylation in response to cytokine stimulation. Tyrosine phosphorylated STATs dimerize and translocate into the nucleus to activate specific genes. Different members of the STAT protein family have distinct functions in cytokine signaling. Biochemical and genetic analysis has demonstrated that Stat1 is essential for gene activation in response to interferon stimulation. Although progress has been made toward understanding STAT activation, little is known about how STAT signals are down-regulated. We report here the isolation of a family of PIAS (protein inhibitor of activated STAT) proteins. PIAS1, but not other PIAS proteins, blocked the DNA binding activity of Stat1 and inhibited Stat1-mediated gene activation in response to interferon. Coimmunoprecipitation analysis showed that PIAS1 was associated with Stat1 but not Stat2 or Stat3 after ligand stimulation. The in vivo PIAS1–Stat1 interaction requires phosphorylation of Stat1 on Tyr-701. These results identify PIAS1 as a specific inhibitor of Stat1-mediated gene activation and suggest that there may exist a specific PIAS inhibitor in every STAT signaling pathway.
Resumo:
The PTEN/MMAC1 phosphatase is a tumor suppressor gene implicated in a wide range of human cancers. Here we provide biochemical and functional evidence that PTEN/MMAC1 acts a negative regulator of the phosphoinositide 3-kinase (PI3-kinase)/Akt pathway. PTEN/MMAC1 impairs activation of endogenous Akt in cells and inhibits phosphorylation of 4E-BP1, a downstream target of the PI3-kinase/Akt pathway involved in protein translation, whereas a catalytically inactive, dominant negative PTEN/MMAC1 mutant enhances 4E-BP1 phosphorylation. In addition, PTEN/MMAC1 represses gene expression in a manner that is rescued by Akt but not PI3-kinase. Finally, higher levels of Akt activation are observed in human prostate cancer cell lines and xenografts lacking PTEN/MMAC1 expression when compared with PTEN/MMAC1-positive prostate tumors or normal prostate tissue. Because constitutive activation of either PI3-kinase or Akt is known to induce cellular transformation, an increase in the activation of this pathway caused by mutations in PTEN/MMAC1 provides a potential mechanism for its tumor suppressor function.
Resumo:
It has been shown in several animal models that HIV infection of accessory cells (ACs) plays an important role in development of AIDS. Here, we report that ACs treated with HIV-1 Tat protein (Tat-ACs) have a decreased ability to organize cellular aggregates as compared with untreated ACs, resulting in incomplete activation of T cells in responses to anti-CD3 mAb or staphylococcal enterotoxin B stimulation. The T cells failed to up-regulate adhesion molecules CD11a and CD2 on the cell surface and had reduced proliferative responses, as determined by [3H]thymidine incorporation, but they obtained lymphoblast-like morphology and expressed early activation antigens on the cell surface such as Fas and CD69 and interleukin 2 receptor, at comparable levels as those T cells undergoing a maximal proliferation. These results suggest that the Tat-AC-induced defect occurs in the late, but not in the early, phases of T cell activation. Normal expression of cell surface Fas antigen accompanied by defects in late activation thus may result in the susceptibility of these T cells to apoptosis. Our studies suggest that dysfunction, hyperactivation, and susceptibility to apoptosis, as observed with T cells isolated from HIV-infected individuals, may be, at least in part, a consequence of abnormal functions of ACs.
Resumo:
A tetracycline-controlled gene expression system provides a powerful tool to dissect the functions of gene products. However, it often appears difficult to establish cell lines or transgenic animals stably expressing tetracycline-dependent transactivators, possibly as a result of toxicity of the transactivator domains used. In order to overcome this problem, we developed a novel tetracycline-dependent transactivator that works efficiently in mammalian cells. This transactivator is a fusion of the tet reverse repressor mutant and the transcriptional activating domain of human E2F4, which is ubiquitously expressed in vivo. We demonstrate here that this tetracycline-regulated gene expression system provides a two log transcriptional activation in mammalian cells as assessed by northern blot and luciferase analyses. Combining this system with green fluorescent protein reporter systems or microarray gene expression profiling will facilitate the study of gene function.