969 resultados para Ordinary and partial differential equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long time–evolution of disturbances to slowly–varying solutions of partial differential equations is subject to the adiabatic invariance of the wave action. Generally, this approximate conservation law is obtained under the assumption that the partial differential equations are derived from a variational principle or have a canonical Hamiltonian structure. Here, the wave action conservation is examined for equations that possess a non–canonical (Poisson) Hamiltonian structure. The linear evolution of disturbances in the form of slowly varying wavetrains is studied using a WKB expansion. The properties of the original Hamiltonian system strongly constrain the linear equations that are derived, and this is shown to lead to the adiabatic invariance of a wave action. The connection between this (approximate) invariance and the (exact) conservation laws of pseudo–energy and pseudomomentum that exist when the basic solution is exactly time and space independent is discussed. An evolution equation for the slowly varying phase of the wavetrain is also derived and related to Berry's phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study spectral properties of the Laplace-Beltrami operator on two relevant almost-Riemannian manifolds, namely the Grushin structures on the cylinder and on the sphere. This operator contains first order diverging terms caused by the divergence of the volume. We get explicit descriptions of the spectrum and the eigenfunctions. In particular in both cases we get a Weyl's law with leading term Elog E. We then study the drastic effect of Aharonov-Bohm magnetic potentials on the spectral properties. Other generalised Riemannian structures including conic and anti-conic type manifolds are also studied. In this case, the Aharonov-Bohm magnetic potential may affect the self-adjointness of the Laplace-Beltrami operator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider retarded functional differential equations in the setting of Kurzweil-Henstock integrable functions and we state an averaging result for these equations. Our result generalizes previous ones. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the article is to present a unified approach to the existence, uniqueness and regularity of solutions to problems belonging to a class of second order in time semilinear partial differential equations in Banach spaces. Our results are applied next to a number of examples appearing in literature, which fall into the class of strongly damped semilinear wave equations. The present work essentially extends the results on the existence and regularity of solutions to such problems. Previously, these problems have been considered mostly within the Hilbert space setting and with the main part operators being selfadjoint. In this article we present a more general approach, involving sectorial operators in reflexive Banach spaces. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a collocation method for numerically solving Cauchy-type linear singular integro-differential equations. The numerical method is based on the transformation of the integro-differential equation into an integral equation, and then applying a collocation method to solve the latter. The collocation points are chosen as the Chebyshev nodes. Uniform convergence of the resulting method is then discussed. Numerical examples are presented and solved by the numerical techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectral theory for linear autonomous neutral functional differential equations (FDE) yields explicit formulas for the large time behaviour of solutions. Our results are based on resolvent computations and Dunford calculus, applied to establish explicit formulas for the large time behaviour of solutions of FDE. We investigate in detail a class of two-dimensional systems of FDE. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a sufficient condition for a zero of a function that arises typically as the characteristic equation of a linear functional differential equations of neutral type, to be simple and dominant. This knowledge is useful in order to derive the asymptotic behaviour of solutions of such equations. A simple characteristic equation, arisen from the study of delay equations with small delay, is analyzed in greater detail. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study binary differential equations a(x, y)dy (2) + 2b(x, y) dx dy + c(x, y)dx (2) = 0, where a, b, and c are real analytic functions. Following the geometric approach of Bruce and Tari in their work on multiplicity of implicit differential equations, we introduce a definition of the index for this class of equations that coincides with the classical Hopf`s definition for positive binary differential equations. Our results also apply to implicit differential equations F(x, y, p) = 0, where F is an analytic function, p = dy/dx, F (p) = 0, and F (pp) not equal aEuro parts per thousand 0 at the singular point. For these equations, we relate the index of the equation at the singular point with the index of the gradient of F and index of the 1-form omega = dy -aEuro parts per thousand pdx defined on the singular surface F = 0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we discuss the problem of smooth and analytic regularity for hyperfunction solutions to linear partial differential equations with analytic coefficients. In particular we show that some well known ""sum of squares"" operators, which satisfy Hormander`s condition and consequently are hypoelliptic, admit hyperfunction solutions that are not smooth (in particular they are not distributions).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is dedicated to harmonic wavelet Galerkin methods for the solution of partial differential equations. Several variants of the method are proposed and analyzed, using the Burgers equation as a test model. The computational complexity can be reduced when the localization properties of the wavelets and restricted interactions between different scales are exploited. The resulting variants of the method have computational complexities ranging from O(N(3)) to O(N) (N being the space dimension) per time step. A pseudo-spectral wavelet scheme is also described and compared to the methods based on connection coefficients. The harmonic wavelet Galerkin scheme is applied to a nonlinear model for the propagation of precipitation fronts, with the front locations being exposed in the sizes of the localized wavelet coefficients. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical modeling has been extensively applied to the study and development of fuel cells. In this work, the objective is to characterize a mechanistic model for the anode of a direct ethanol fuel cell and perform appropriate simulations. The software Comsol Multiphysics (R) (and the Chemical Engineering Module) was used in this work. The software Comsol Multiphysics (R) is an interactive environment for modeling scientific and engineering applications using partial differential equations (PDEs). Based on the finite element method, it provides speed and accuracy for several applications. The mechanistic model developed here can supply details of the physical system, such as the concentration profiles of the components within the anode and the coverage of the adsorbed species on the electrode surface. Also, the anode overpotential-current relationship can be obtained. To validate the anode model presented in this paper, experimental data obtained with a single fuel cell operating with an ethanol solution at the anode were used. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LINS, Filipe C. A. et al. Modelagem dinâmica e simulação computacional de poços de petróleo verticais e direcionais com elevação por bombeio mecânico. In: CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS, 5. 2009, Fortaleza, CE. Anais... Fortaleza: CBPDPetro, 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stability of multistep second derivative methods for integro-differential equations is examined through a test equation which allows for the construction of the associated characteristic polynomial and its region of stability (roots in the unit circle) at a proper parameter space. (c) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the relationships between different concepts of stability in measure for the solutions of an autonomous or periodic neutral functional differential equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we study the existence of shock wave solutions for systems of partial differential equations of hydrodynamics with viscosity in one space dimension in the context of Colombeau's theory of generalized functions. This study uses the equality in the strict sense and the association of generalized functions (that is the weak equality). The shock wave solutions are given in terms of generalized functions that have the classical Heaviside step function as macroscopic aspect. This means that solutions are sought in the form of sequences of regularizations to the Heaviside function that have to satisfy part of the equations in the strict sense and part of the equations in the sense of association.