961 resultados para Optimization methods


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, kernel-based Machine Learning methods have gained great popularity in many data analysis and data mining fields: pattern recognition, biocomputing, speech and vision, engineering, remote sensing etc. The paper describes the use of kernel methods to approach the processing of large datasets from environmental monitoring networks. Several typical problems of the environmental sciences and their solutions provided by kernel-based methods are considered: classification of categorical data (soil type classification), mapping of environmental and pollution continuous information (pollution of soil by radionuclides), mapping with auxiliary information (climatic data from Aral Sea region). The promising developments, such as automatic emergency hot spot detection and monitoring network optimization are discussed as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term preservation of bioreporter bacteria is essential for the functioning of cell-based detection devices, particularly when field application, e.g., in developing countries, is intended. We varied the culture conditions (i.e., the NaCl content of the medium), storage protection media, and preservation methods (vacuum drying vs. encapsulation gels remaining hydrated) in order to achieve optimal preservation of the activity of As (III) bioreporter bacteria during up to 12 weeks of storage at 4 degrees C. The presence of 2% sodium chloride during the cultivation improved the response intensity of some bioreporters upon reconstitution, particularly of those that had been dried and stored in the presence of sucrose or trehalose and 10% gelatin. The most satisfying, stable response to arsenite after 12 weeks storage was obtained with cells that had been dried in the presence of 34% trehalose and 1.5% polyvinylpyrrolidone. Amendments of peptone, meat extract, sodium ascorbate, and sodium glutamate preserved the bioreporter activity only for the first 2 weeks, but not during long-term storage. Only short-term stability was also achieved when bioreporter bacteria were encapsulated in gels remaining hydrated during storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract : This work is concerned with the development and application of novel unsupervised learning methods, having in mind two target applications: the analysis of forensic case data and the classification of remote sensing images. First, a method based on a symbolic optimization of the inter-sample distance measure is proposed to improve the flexibility of spectral clustering algorithms, and applied to the problem of forensic case data. This distance is optimized using a loss function related to the preservation of neighborhood structure between the input space and the space of principal components, and solutions are found using genetic programming. Results are compared to a variety of state-of--the-art clustering algorithms. Subsequently, a new large-scale clustering method based on a joint optimization of feature extraction and classification is proposed and applied to various databases, including two hyperspectral remote sensing images. The algorithm makes uses of a functional model (e.g., a neural network) for clustering which is trained by stochastic gradient descent. Results indicate that such a technique can easily scale to huge databases, can avoid the so-called out-of-sample problem, and can compete with or even outperform existing clustering algorithms on both artificial data and real remote sensing images. This is verified on small databases as well as very large problems. Résumé : Ce travail de recherche porte sur le développement et l'application de méthodes d'apprentissage dites non supervisées. Les applications visées par ces méthodes sont l'analyse de données forensiques et la classification d'images hyperspectrales en télédétection. Dans un premier temps, une méthodologie de classification non supervisée fondée sur l'optimisation symbolique d'une mesure de distance inter-échantillons est proposée. Cette mesure est obtenue en optimisant une fonction de coût reliée à la préservation de la structure de voisinage d'un point entre l'espace des variables initiales et l'espace des composantes principales. Cette méthode est appliquée à l'analyse de données forensiques et comparée à un éventail de méthodes déjà existantes. En second lieu, une méthode fondée sur une optimisation conjointe des tâches de sélection de variables et de classification est implémentée dans un réseau de neurones et appliquée à diverses bases de données, dont deux images hyperspectrales. Le réseau de neurones est entraîné à l'aide d'un algorithme de gradient stochastique, ce qui rend cette technique applicable à des images de très haute résolution. Les résultats de l'application de cette dernière montrent que l'utilisation d'une telle technique permet de classifier de très grandes bases de données sans difficulté et donne des résultats avantageusement comparables aux méthodes existantes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One major methodological problem in analysis of sequence data is the determination of costs from which distances between sequences are derived. Although this problem is currently not optimally dealt with in the social sciences, it has some similarity with problems that have been solved in bioinformatics for three decades. In this article, the authors propose an optimization of substitution and deletion/insertion costs based on computational methods. The authors provide an empirical way of determining costs for cases, frequent in the social sciences, in which theory does not clearly promote one cost scheme over another. Using three distinct data sets, the authors tested the distances and cluster solutions produced by the new cost scheme in comparison with solutions based on cost schemes associated with other research strategies. The proposed method performs well compared with other cost-setting strategies, while it alleviates the justification problem of cost schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, protein-ligand docking has become a powerful tool for drug development. Although several approaches suitable for high throughput screening are available, there is a need for methods able to identify binding modes with high accuracy. This accuracy is essential to reliably compute the binding free energy of the ligand. Such methods are needed when the binding mode of lead compounds is not determined experimentally but is needed for structure-based lead optimization. We present here a new docking software, called EADock, that aims at this goal. It uses an hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 A around the center of mass of the ligand position in the crystal structure, and on the contrary to other benchmarks, our algorithm was fed with optimized ligand positions up to 10 A root mean square deviation (RMSD) from the crystal structure, excluding the latter. This validation illustrates the efficiency of our sampling strategy, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures could be explained by the presence of crystal contacts in the experimental structure. Finally, the ability of EADock to accurately predict binding modes on a real application was illustrated by the successful docking of the RGD cyclic pentapeptide on the alphaVbeta3 integrin, starting far away from the binding pocket.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Many retinal degenerations result from defective retina-specific gene expressions. Thus, it is important to understand how the expression of a photoreceptor-specific gene is regulated in vivo in order to achieve successful gene therapy. The present study aims to design an AAV2/8 vector that can regulate the transcript level in a physiological manner to replace missing PDE6b in Rd1 and Rd10 mice. In previous studies (Ogieta, et al., 2000), the short 5' flanking sequence of the human PDE6b gene (350 bp) was shown to be photoreceptor-specific in transgenic mice. However, the efficiency and specificity of the 5' flanking region of the human PDE6b was not investigated in the context of gene therapy during retinal degeneration. In this study, two different sequences of the 5' flanking region of the human PDE6b gene were studied as promoter elements and their expression will be tested in wild type and diseased retinas (Rd 10 mice).Methods: Two 5' flanking fragments of the human PDE6b gene: (-93 to +53 (150 bp) and -297 to +53 (350 bp)) were cloned in different plasmids in order to check their expression in vitro and in vivo by constructing an AAV2/8 vector. These elements drove the activity of either luciferase (pGL3 plasmids) or EGFP. jetPEI transfection in Y 79 cells was used to evaluate gene expression through luciferase activity. Constructs encoding EGFP under the control of the two promoters were performed in AAV2.1-93 (or 297)-EGFP plasmids to produce AAV2/8 vectors.Results: When pGL3-93 (150 bp) or pGL3-297 (350 bp) were transfected in the Y-79 cells, the smaller fragment (150 bp) showed higher gene expression compared to the 350 bp element and to the SV40 control, as previously reported. The 350 bp drove similar levels of expression when compared to the SV40 promoter. In view of these results, the fragments (150 bp or 350 bp) were integrated into the AAV2.1-EGFP plasmid to produce AAV2/8 vector, and we are currently evaluating the efficiency and specificity of the produced constructs in vivo in normal and diseased retinas.Conclusions: Comparisons of these vectors with vectors bearing ubiquitous promoters should reveal which construct is the most suitable to drive efficient and specific gene expression in diseased retinas in order to restore a normal function on the long term.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A headspace solid-phase microextraction procedure (HS-SPME) was developed for the profiling of traces present in 3,4-methylenedioxymethylampethamine (MDMA). Traces were first extracted using HS-SPME and then analyzed by gas chromatography-mass spectroscopy (GC-MS). The HS-SPME conditions were optimized using varying conditions. Optimal results were obtained when 40 mg of crushed MDMA sample was heated at 80 °C for 15 min, followed by extraction at 80 °C for 15 min with a polydimethylsiloxane/divinylbenzene coated fibre. A total of 31 compounds were identified as traces related to MDMA synthesis, namely precursors, intermediates or by-products. In addition some fatty acids used as tabletting materials and caffeine used as adulterant, were also detected. The use of a restricted set of 10 target compounds was also proposed for developing a screening tool for clustering samples having close profile. 114 seizures were analyzed using an SPME auto-sampler (MultiPurpose Samples MPS2), purchased from Gerstel GMBH & Co. (Germany), and coupled to GC-MS. The data was handled using various pre-treatment methods, followed by the study of similarities between sample pairs based on the Pearson correlation. The results show that HS-SPME, coupled with the suitable statistical method is a powerful tool for distinguishing specimens coming from the same seizure and specimens coming from different seizures. This information can be used by law enforcement personnel to visualize the ecstasy distribution network as well as the clandestine tablet manufacturing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixture materials, mix design, and pavement construction are not isolated steps in the concrete paving process. Each affects the other in ways that determine overall pavement quality and long-term performance. However, equipment and procedures commonly used to test concrete materials and concrete pavements have not changed in decades, leaving gaps in our ability to understand and control the factors that determine concrete durability. The concrete paving community needs tests that will adequately characterize the materials, predict interactions, and monitor the properties of the concrete. The overall objectives of this study are (1) to evaluate conventional and new methods for testing concrete and concrete materials to prevent material and construction problems that could lead to premature concrete pavement distress and (2) to examine and refine a suite of tests that can accurately evaluate concrete pavement properties. The project included three phases. In Phase I, the research team contacted each of 16 participating states to gather information about concrete and concrete material tests. A preliminary suite of tests to ensure long-term pavement performance was developed. The tests were selected to provide useful and easy-to-interpret results that can be performed reasonably and routinely in terms of time, expertise, training, and cost. The tests examine concrete pavement properties in five focal areas critical to the long life and durability of concrete pavements: (1) workability, (2) strength development, (3) air system, (4) permeability, and (5) shrinkage. The tests were relevant at three stages in the concrete paving process: mix design, preconstruction verification, and construction quality control. In Phase II, the research team conducted field testing in each participating state to evaluate the preliminary suite of tests and demonstrate the testing technologies and procedures using local materials. A Mobile Concrete Research Lab was designed and equipped to facilitate the demonstrations. This report documents the results of the 16 state projects. Phase III refined and finalized lab and field tests based on state project test data. The results of the overall project are detailed herein. The final suite of tests is detailed in the accompanying testing guide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Työn tarkoituksena oli testata jo tutkimuskeskuksella käytössä ollutta ja tutkimuskeskukselle tässä työssä kehitettyä pakkauksen vesihöyrytiiveyteen liittyvää mittausmenetelmää. Saatuja tuloksia verrattiin keskenään sekä materiaalista mitattuihin arvoihin. Elintarvikepakkauksia tutkittiin myös kosteussensoreiden, säilyvyyskokeen sekä kuljetussimuloinnin avulla. Optimoinnilla tutkittiin pakkauksen muodon vaikutusta vesihöyrytiiveyteen. Pakkauksen vesihöyrynläpäisyn mittaamiseen kehitetty menetelmä toimi hyvin ja sen toistettavuus oli hyvä. Verrattaessa sitä jo olemassa olleeseen menetelmään tulokseksi saatiin, että uusi menetelmä oli nopeampi ja vaati vähemmän työaikaa, mutta molemmat menetelmät antoivat hyviä arvoja rinnakkaisille näytteille. Kosteussensoreilla voitiin tutkia tyhjän pakkauksen sisällä olevan kosteuden muutoksia säilytyksen aikana. Säilyvyystesti tehtiin muroilla ja parhaan vesihöyrysuojan antoivat pakkaukset joissa oli alumiinilaminaatti- tai metalloitu OPP kerros. Kuljetustestauksen ensimmäisessä testissä pakkauksiin pakattiin muroja ja toisessa testissä nuudeleita. Kuljetussimuloinnilla ei ollutvaikutusta pakkausten sisäpintojen eheyteen eikä siten pakkausten vesihöyrytiiveyteen. Optimoinnilla vertailtiin eri muotoisten pakkausten tilavuus/pinta-ala suhdetta ja vesihöyrytiiveyden riippuvuutta pinta-alasta. Optimaalisimmaksi pakkaukseksi saatiin pallo, jonka pinta-ala oli pienin ja materiaalin sallima vesihöyrynläpäisy suurin ja vesihöyrybarrierin määrä pienin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, cleaning of ceramic filter media was studied. Mechanisms of fouling and dissolution of iron compounds, as well as methods for cleaning ceramic membranes fouled by iron deposits were studied in the literature part. Cleaning agents and different methods were closer examined in the experimental part of the thesis. Pyrite is found in the geologic strata. It is oxidized to form ferrous ions Fe(II) and ferric ions Fe(III). Fe(III) is further oxidized in the hydrolysis to form ferric hydroxide. Hematite and goethite, for instance, are naturally occurring iron oxidesand hydroxides. In contact with filter media, they can cause severe fouling, which common cleaning techniques competent enough to remove. Mechanisms for the dissolution of iron oxides include the ligand-promoted pathway and the proton-promoted pathway. The dissolution can also be reductive or non-reductive. The most efficient mechanism is the ligand-promoted reductive mechanism that comprises two stages: the induction period and the autocatalytic dissolution.Reducing agents(such as hydroquinone and hydroxylamine hydrochloride), chelating agents (such as EDTA) and organic acids are used for the removal of iron compounds. Oxalic acid is the most effective known cleaning agent for iron deposits. Since formulations are often more effective than organic acids, reducing agents or chelating agents alone, the citrate¿bicarbonate¿dithionite system among others is well studied in the literature. The cleaning is also enhanced with ultrasound and backpulsing.In the experimental part, oxalic acid and nitric acid were studied alone andin combinations. Also citric acid and ascorbic acid among other chemicals were tested. Soaking experiments, experiments with ultrasound and experiments for alternative methods to apply the cleaning solution on the filter samples were carried out. Permeability and ISO Brightness measurements were performed to examine the influence of the cleaning methods on the samples. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis of the solutions was carried out to determine the dissolved metals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study explores the early phases of intercompany relationship building, which is a very important topic for purchasing and business development practitioners as well as for companies' upper management. There is a lot ofevidence that a proper engagement with markets increases a company's potential for achieving business success. Taking full advantage of the market possibilities requires, however, a holistic view of managing related decision-making chain. Most literature as well as the business processes of companies are lacking this holism. Typically they observe the process from the perspective of individual stages and thus lead to discontinuity and sub-optimization. This study contains a comprehensive introduction to and evaluation of literature related to various steps of the decision-making process. It is studied from a holistic perspective ofdetermining a company's vertical integration position within its demand/ supplynetwork context; translating the vertical integration objectives to feasible strategies and objectives; and operationalizing the decisions made through engagement with collaborative intercompany relationships. The empirical part of the research has been conducted in two sections. First the phenomenon of intercompany engagement is studied using two complementary case studies. Secondly a survey hasbeen conducted among the purchasing and business development managers of several electronics manufacturing companies, to analyze the processes, decision-makingcriteria and success factors of engagement for collaboration. The aim has been to identify the reasons why companies and their management act the way they do. As a combination of theoretical and empirical research an analysis has been produced of what would be an ideal way of engaging with markets. Based on the respective findings the study concludes by proposing a holistic framework for successful engagement. The evidence presented throughout the study demonstrates clear gaps, discontinuities and limitations in both current research and in practical purchasing decision-making chains. The most significant discontinuity is the identified disconnection between the supplier selection process and related criteria and the relationship success factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AbstractObjective:The present study is aimed at contributing to identify the most appropriate OSEM parameters to generate myocardial perfusion imaging reconstructions with the best diagnostic quality, correlating them with patients' body mass index.Materials and Methods:The present study included 28 adult patients submitted to myocardial perfusion imaging in a public hospital. The OSEM method was utilized in the images reconstruction with six different combinations of iterations and subsets numbers. The images were analyzed by nuclear cardiology specialists taking their diagnostic value into consideration and indicating the most appropriate images in terms of diagnostic quality.Results:An overall scoring analysis demonstrated that the combination of four iterations and four subsets has generated the most appropriate images in terms of diagnostic quality for all the classes of body mass index; however, the role played by the combination of six iterations and four subsets is highlighted in relation to the higher body mass index classes.Conclusion:The use of optimized parameters seems to play a relevant role in the generation of images with better diagnostic quality, ensuring the diagnosis and consequential appropriate and effective treatment for the patient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Russian and Baltic electricity markets are in the process of reformation and development on the way for competitive and transparent market. Nordic market also undergoes some changes on the way to market integration. Old structure and practices have been expired whereas new laws and rules come into force. The master thesis describes structure and functioning of wholesale electricity markets, cross-border connections between different countries. Additionally methods of cross-border trading using different methods of capacity allocation are disclosed. The main goal of present thesis is to study current situation at different electricity markets and observe changes coming into force as well as the capacity and electricity balances forecast in order to optimize short term power trading between countries and estimate the possible profit for the company.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis (TFG) the results of the comparison between different methods to obtain a recombinant protein, by orthologous and heterologous expression, are exposed. This study will help us to identify the best way to express and purify a recombinant protein that will be used for biotechnology applications. In the first part of the project the goal was to find the best expression and purification system to obtain the recombinant protein of interest. To achieve this objective, a system expression in bacteria and in yeast was designed. The DNA was cloned into two different expression vectors to create a fusion protein with two different tags, and the expression of the protein was induced by IPTG or glucose. Additionally, in yeast, two promoters where used to express the protein, the one corresponding to the same protein (orthologous expression), and the ENO2 promoter (heterologous expression). The protein of interest is a NAD-dependent enzyme so, in a second time, its specific activity was evaluated by coenzyme conversion. The results of the TFG suggest that, comparing the model organisms, bacteria are more efficient than yeast because the quantity of protein obtained is higher and better purified. Regarding yeast, comparing the two expression mechanisms that were designed, heterologous expression works much better than the orthologous expression, so in case that we want to use yeast as expression model for the protein of interest, ENO2 will be the best option. Finally, the enzymatic assays, done to compare the effectiveness of the different expression mechanisms respect to the protein activity, revealed that the protein purified in yeast had more activity in converting the NAD coenzyme.