950 resultados para Optimal Linear Codes
Resumo:
In this paper we construct low decoding complexity STBCs by using the Pauli matrices as linear dispersion matrices. In this case the Hurwitz-Radon orthogonality condition is shown to be easily checked by transferring the problem to $\mathbb{F}_4$ domain. The problem of constructing low decoding complexity STBCs is shown to be equivalent to finding certain codes over $\mathbb{F}_4$. It is shown that almost all known low complexity STBCs can be obtained by this approach. New codes are given that have the least known decoding complexity in particular ranges of rate.
Resumo:
We consider Gaussian multiple-input multiple-output (MIMO) channels with discrete input alphabets. We propose a non-diagonal precoder based on X-Codes in to increase the mutual information. The MIMO channel is transformed into a set of parallel subchannels using Singular Value Decomposition (SVD) and X-codes are then used to pair the subchannels. X-Codes are fully characterized by the pairings and the 2 × 2 real rotation matrices for each pair (parameterized with a single angle). This precoding structure enables to express the total mutual information as a sum of the mutual information of all the pairs. The problem of finding the optimal precoder with the above structure, which maximizes the total mutual information, is equivalent to i) optimizing the rotation angle and the power allocation within each pair and ii) finding the optimal pairing and power allocation among the pairs. It is shown that the mutual information achieved with the proposed pairing scheme is very close to that achieved with the optimal precoder by Cruz et al., and significantly better than mercury/waterfilling strategy by Lozano et al.. Our approach greatly simplifies both the precoder optimization and the detection complexity, making it suitable for practical applications.
Resumo:
A single source network is said to be memory-free if all of the internal nodes (those except the source and the sinks) do not employ memory but merely send linear combinations of the symbols received at their incoming edges on their outgoing edges. In this work, we introduce network-error correction for single source, acyclic, unit-delay, memory-free networks with coherent network coding for multicast. A convolutional code is designed at the source based on the network code in order to correct network- errors that correspond to any of a given set of error patterns, as long as consecutive errors are separated by a certain interval which depends on the convolutional code selected. Bounds on this interval and the field size required for constructing the convolutional code with the required free distance are also obtained. We illustrate the performance of convolutional network error correcting codes (CNECCs) designed for the unit-delay networks using simulations of CNECCs on an example network under a probabilistic error model.
Resumo:
We consider a time division duplex multiple-input multiple-output (nt × nr MIMO). Using channel state information (CSI) at the transmitter, singular value decomposition (SVD) of the channel matrix is performed. This transforms the MIMO channel into parallel subchannels, but has a low overall diversity order. Hence, we propose X-Codes which achieve a higher diversity order by pairing the subchannels, prior to SVD preceding. In particular, each pair of information symbols is encoded by a fixed 2 × 2 real rotation matrix. X-Codes can be decoded using nr very low complexity two-dimensional real sphere decoders. Error probability analysis for X-Codes enables us to choose the optimal pairing and the optimal rotation angle for each pair. Finally, we show that our new scheme outperforms other low complexity precoding schemes.
Resumo:
Performance of space-time block codes can be improved using the coordinate interleaving of the input symbols from rotated M-ary phase shift keying (MPSK) and M-ary quadrature amplitude modulation (MQAM) constellations. This paper is on the performance analysis of coordinate-interleaved space-time codes, which are a subset of single-symbol maximum likelihood decodable linear space-time block codes, for wireless multiple antenna terminals. The analytical and simulation results show that full diversity is achievable. Using the equivalent single-input single-output model, simple expressions for the average bit error rates are derived over flat uncorrelated Rayleigh fading channels. Optimum rotation angles are found by finding the minimum of the average bit error rate curves.
Resumo:
We consider the problem of minimizing the bandwidth required to repair a failed node when data is stored across n nodes in a distributed manner, so as to facilitate reconstruction of the entire data by connecting to any k out of the n nodes. We provide explicit and optimal constructions which permit exact replication of a failed systematic node.
Resumo:
Some basic results that help in determining the Diversity-Multiplexing Tradeoff (DMT) of cooperative multihop networks are first identified. As examples, the maximum achievable diversity gain is shown to equal the min-cut between source and sink, whereas the maximal multiplexing gain is shown to equal the minimum rank of the matrix characterizing the MIMO channel appearing across a cut in the network. Two multi-hop generalizations of the two-hop network are then considered, namely layered networks as well as a class of networks introduced here and termed as K-parallel-path (KPP) networks. The DMT of KPP networks is characterized for K > 3. It is shown that a linear DMT between the maximum diversity dmax and the maximum multiplexing gain of 1 is achievable for fully-connected, layered networks. Explicit coding schemes achieving the DMT that make use of cyclic-division-algebra-based distributed space-time codes underlie the above results. Two key implications of the results in the paper are that the half-duplex constraint does not entail any rate loss for a large class of cooperative networks and that simple, amplify-and-forward protocols are often sufficient to attain the optimal DMT.
Resumo:
Large-grain synchronous dataflow graphs or multi-rate graphs have the distinct feature that the nodes of the dataflow graph fire at different rates. Such multi-rate large-grain dataflow graphs have been widely regarded as a powerful programming model for DSP applications. In this paper we propose a method to minimize buffer storage requirement in constructing rate-optimal compile-time (MBRO) schedules for multi-rate dataflow graphs. We demonstrate that the constraints to minimize buffer storage while executing at the optimal computation rate (i.e. the maximum possible computation rate without storage constraints) can be formulated as a unified linear programming problem in our framework. A novel feature of our method is that in constructing the rate-optimal schedule, it directly minimizes the memory requirement by choosing the schedule time of nodes appropriately. Lastly, a new circular-arc interval graph coloring algorithm has been proposed to further reduce the memory requirement by allowing buffer sharing among the arcs of the multi-rate dataflow graph. We have constructed an experimental testbed which implements our MBRO scheduling algorithm as well as (i) the widely used periodic admissible parallel schedules (also known as block schedules) proposed by Lee and Messerschmitt (IEEE Transactions on Computers, vol. 36, no. 1, 1987, pp. 24-35), (ii) the optimal scheduling buffer allocation (OSBA) algorithm of Ning and Gao (Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Charleston, SC, Jan. 10-13, 1993, pp. 29-42), and (iii) the multi-rate software pipelining (MRSP) algorithm (Govindarajan and Gao, in Proceedings of the 1993 International Conference on Application Specific Array Processors, Venice, Italy, Oct. 25-27, 1993, pp. 77-88). Schedules generated for a number of random dataflow graphs and for a set of DSP application programs using the different scheduling methods are compared. The experimental results have demonstrated a significant improvement (10-20%) in buffer requirements for the MBRO schedules compared to the schedules generated by the other three methods, without sacrificing the computation rate. The MBRO method also gives a 20% average improvement in computation rate compared to Lee's Block scheduling method.
Resumo:
Due to increasing trend of intensive rice cultivation in a coastal river basin, crop planning and groundwater management are imperative for the sustainable agriculture. For effective management, two models have been developed viz. groundwater balance model and optimum cropping and groundwater management model to determine optimum cropping pattern and groundwater allocation from private and government tubewells according to different soil types (saline and non-saline), type of agriculture (rainfed and irrigated) and seasons (monsoon and winter). A groundwater balance model has been developed considering mass balance approach. The components of the groundwater balance considered are recharge from rainfall, irrigated rice and non-rice fields, base flow from rivers and seepage flow from surface drains. In the second phase, a linear programming optimization model is developed for optimal cropping and groundwater management for maximizing the economic returns. The models developed were applied to a portion of coastal river basin in Orissa State, India and optimal cropping pattern for various scenarios of river flow and groundwater availability was obtained.
Resumo:
Feature extraction in bilingual OCR is handicapped by the increase in the number of classes or characters to be handled. This is evident in the case of Indian languages whose alphabet set is large. It is expected that the complexity of the feature extraction process increases with the number of classes. Though the determination of the best set of features that could be used cannot be ascertained through any quantitative measures, the characteristics of the scripts can help decide on the feature extraction procedure. This paper describes a hierarchical feature extraction scheme for recognition of printed bilingual (Tamil and Roman) text. The scheme divides the combined alphabet set of both the scripts into subsets by the extraction of certain spatial and structural features. Three features viz geometric moments, DCT based features and Wavelet transform based features are extracted from the grouped symbols and a linear transformation is performed on them for the purpose of efficient representation in the feature space. The transformation is obtained by the maximization of certain criterion functions. Three techniques : Principal component analysis, maximization of Fisher's ratio and maximization of divergence measure have been employed to estimate the transformation matrix. It has been observed that the proposed hierarchical scheme allows for easier handling of the alphabets and there is an appreciable rise in the recognition accuracy as a result of the transformations.
Resumo:
We consider a time varying wireless fading channel, equalized by an LMS linear equalizer in decision directed mode (DD-LMS-LE). We study how well this equalizer tracks the optimal Wiener equalizer. Initially we study a fixed channel.For a fixed channel, we obtain the existence of DD attractors near the Wiener filter at high SNRs using an ODE (Ordinary Differential Equation) approximating the DD-LMS-LE. We also show, via examples, that the DD attractors may not be close to the Wiener filters at low SNRs. Next we study a time varying fading channel modeled by an Auto-regressive (AR) process of order 2. The DD-LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs. We show via examples that the LMS equalizer ODE show tracks the ODE corresponding to the instantaneous Wiener filter when the SNR is high. This may not happen at low SNRs.
Resumo:
We look at graphical descriptions of block codes known as trellises, which illustrate connections between algebra and graph theory, and can be used to develop powerful decoding algorithms. Trellis sizes for linear block codes are known to grow exponentially with the code parameters. Of considerable interest to coding theorists therefore, are more compact descriptions called tail-biting trellises which in some cases can be much smaller than any conventional trellis for the same code . We derive some interesting properties of tail-biting trellises and present a new decoding algorithm.
Resumo:
We consider a time varying wireless fading channel, equalized by an LMS linear equalizer. We study how well this equalizer tracks the optimal Wiener equalizer. We model the channel by an Auto-regressive (AR) process. Then the LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs (ordinary differential equations). Using these ODEs, the error between the LMS equalizer and the instantaneous Wiener filter is shown to decay exponentially/polynomially to zero unless the channel is marginally stable in which case the convergence may not hold.Using the same ODEs, we also show that the corresponding Mean Square Error (MSE) converges towards minimum MSE(MMSE) at the same rate for a stable channel. We further show that the difference between the MSE and the MMSE does not explode with time even when the channel is unstable. Finally we obtain an optimum step size for the linear equalizer in terms of the AR parameters, whenever the error decay is exponential.
Resumo:
An overview of space-time code construction based on cyclic division algebras (CDA) is presented. Applications of such space-time codes to the construction of codes optimal under the diversity-multiplexing gain (D-MG) tradeoff, to the construction of the so-called perfect space-time codes, to the construction of optimal space-time codes for the ARQ channel as well as to the construction of codes optimal for the cooperative relay network channel are discussed. We also present a construction of optimal codes based on CDA for a class of orthogonal amplify and forward (OAF) protocols for the cooperative relay network
Resumo:
A unique code (called Hensel's code) is derived for a rational number by truncating its infinite p-adic expansion. The four basic arithmetic algorithms for these codes are described and their application to rational matrix computations is demonstrated by solving a system of linear equations exactly, using the Gaussian elimination procedure.