919 resultados para Optical pattern recognition Data processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Logic based Pattern Recognition extends the well known similarity models, where the distance measure is the base instrument for recognition. Initial part (1) of current publication in iTECH-06 reduces the logic based recognition models to the reduced disjunctive normal forms of partially defined Boolean functions. This step appears as a way to alternative pattern recognition instruments through combining metric and logic hypotheses and features, leading to studies of logic forms, hypotheses, hierarchies of hypotheses and effective algorithmic solutions. Current part (2) provides probabilistic conclusions on effective recognition by logic means in a model environment of binary attributes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The software architecture and development consideration for open metadata extraction and processing framework are outlined. Special attention is paid to the aspects of reliability and fault tolerance. Grid infrastructure is shown as useful backend for general-purpose task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper conceptual foundations for the development of Grid systems that aimed for satellite data processing are discussed. The state of the art of development of such Grid systems is analyzed, and a model of Grid system for satellite data processing is proposed. An experience obtained within the development of the Grid system for satellite data processing in the Space Research Institute of NASU-NSAU is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Implementation of GEOSS/GMES initiative requires creation and integration of service providers, most of which provide geospatial data output from Grid system to interactive user. In this paper approaches of DOS- centers (service providers) integration used in Ukrainian segment of GEOSS/GMES will be considered and template solutions for geospatial data visualization subsystems will be suggested. Developed patterns are implemented in DOS center of Space Research Institute of National Academy of Science of Ukraine and National Space Agency of Ukraine (NASU-NSAU).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* This work was financially supported by RFBR-04-01-00858.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of decision functions quality in pattern recognition is considered. An overview of the approaches to the solution of this problem is given. Within the Bayesian framework, we suggest an approach based on the Bayesian interval estimates of quality on a finite set of events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper is devoted to the description of hybrid pattern recognition method developed by research groups from Russia, Armenia and Spain. The method is based upon logical correction over the set of conventional neural networks. Output matrices of neural networks are processed according to the potentiality principle which allows increasing of recognition reliability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* The research is supported partly by INTAS: 04-77-7173 project, http://www.intas.be

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data processing services for Meteosat geostationary satellite are presented. Implemented services correspond to the different levels of remote-sensing data processing, including noise reduction at preprocessing level, cloud mask extraction at low-level and fractal dimension estimation at high-level. Cloud mask obtained as a result of Markovian segmentation of infrared data. To overcome high computation complexity of Markovian segmentation parallel algorithm is developed. Fractal dimension of Meteosat data estimated using fractional Brownian motion models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a modification for the high-order neural network (HONN) is presented. Third order networks are considered for achieving translation, rotation and scale invariant pattern recognition. They require however much storage and computation power for the task. The proposed modified HONN takes into account a priori knowledge of the binary patterns that have to be learned, achieving significant gain in computation time and memory requirements. This modification enables the efficient computation of HONNs for image fields of greater that 100 × 100 pixels without any loss of pattern information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the new pattern recognition method based on the unification of algebraic and statistical approaches is described. The main point of the method is the voting procedure upon the statistically weighted regularities, which are linear separators in two-dimensional projections of feature space. The report contains brief description of the theoretical foundations of the method, description of its software realization and the results of series of experiments proving its usefulness in practical tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As massive data sets become increasingly available, people are facing the problem of how to effectively process and understand these data. Traditional sequential computing models are giving way to parallel and distributed computing models, such as MapReduce, both due to the large size of the data sets and their high dimensionality. This dissertation, as in the same direction of other researches that are based on MapReduce, tries to develop effective techniques and applications using MapReduce that can help people solve large-scale problems. Three different problems are tackled in the dissertation. The first one deals with processing terabytes of raster data in a spatial data management system. Aerial imagery files are broken into tiles to enable data parallel computation. The second and third problems deal with dimension reduction techniques that can be used to handle data sets of high dimensionality. Three variants of the nonnegative matrix factorization technique are scaled up to factorize matrices of dimensions in the order of millions in MapReduce based on different matrix multiplication implementations. Two algorithms, which compute CANDECOMP/PARAFAC and Tucker tensor decompositions respectively, are parallelized in MapReduce based on carefully partitioning the data and arranging the computation to maximize data locality and parallelism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately.