911 resultados para Operating costs.
Resumo:
This industrial based research project was undertaken for British Leyland and arose as a result of poor system efficiency on the Maxi and Marina vehicle body build lines. The major factors in the deterioration of system efficiency were identified as: a) The introduction of a 'Gateline' system of vehicle body build. b) The degeneration of a newly introduced measured daywork payment scheme. By relating the conclusions of past work on payment systems to the situation at Cowley, it was concluded that a combination of poor industrial relations and a lack of managerial control had caused the measured daywork scheme to degenerate into a straightforward payment for time at work. This ellminated the monetary incentive to achieve schedule with the consequence that both inefficiency and operating costs increased. To analyse further the cause of inefficiency, a study of Marina gateline stoppage logs was carried out. This revealed that poor system efficiency on the gateline was caused more by the nature of its design than poor reliability on individual items of' plant. The consideration given to system efficiency at the design stage was found to be negligible, the main obstacles being: a) A lack of understanding pertaining to the influence of certain design factors on the efficiency of a production line. b) The absence of data and techniques to predict system efficiency at the design stage. To remedy this situation, a computer simulation study of' the design factors was carried out from which relationships with system efficiency were established and empirical efficiency equations developed. Sets of tables were compiled from the equations and efficiency data relevant to vehicle body building established from the gateline stoppage logs. Computer simulation, the equations and the tables,when used in conjunction. with good efficiency data, are shown to be accurate methods of predicting production line system.efficiency.
Resumo:
This thesis provides a detailed study of methods for dissolving oxygen in water to reduce water requirements for fish farming. The principal sources of oxygen are air or pure oxygen gas. Aeration methods have the distinct advantage of the universal availability of air. However, the effectiveness of such methods is diminished by the presence of nitrogen in the air and, in general, the maintenance of dissolved oxygen levels above 70% saturation is likely to result in excessive power requirements. Pure oxygen has five times the solubility of oxygen in air and it is possible, therefore to achieve much higher transfer rates. However, oxygen is expensive and its economic use is essential: it is important, therefore, to dissolve a high proportion of the oxygen. Four distinct oxygenation systems were evaluated by the author. A detailed analysis of a column oxygenator is given first. The column was designed so that the oxygen bubbles generated are trapped within the column until dissolved. In seawater, much smaller bubbles are formed and this led to the development of a jet oxygenator which disperses gas rubbles within the rearing tank. Both the above systems were designed primarily for oxygenating recycled tank water. For oxygenating a primary water source, a U -tube device was evaluated. Lastly, the possibility of supporting fish stocks without any external power source, other than a pressured supply of oxygen from a liquid oxygen store, was considered. Experience of running commercial-scale oxygenation systems in high-intensity fish farms has made it possible to estimate operating costs of both aeration and oxygenation systems. The significance of these costs is discussed.
Resumo:
ABSTRACT: There has been a growing trend towards the use of biomass as a primary energy source, which now contributes over 54% of the European pulp and paper industry energy needs [1]. The remaining part comes from natural gas, which to a large extent serves as the major source of energy for numerous recovered fiber paper mills located in regions with limited available forest resources. The cost of producing electricity to drive paper machinery and generate heat for steam is increasing as world demand for fossil fuels increases. Additionally, recovered fiber paper mills are also significant producers of fibrous sludge and reject waste material that can contain high amounts of useful energy. Currently, a majority of these waste fractions is disposed of by landspreading, incineration, or landfill. Paper mills must also pay a gate fee to process their waste streams in this way and the result of this is a further increase in operating costs. This work has developed methods to utilize the waste fractions produced at recovered fiber paper mills for the onsite production of combined heat and power (CHP) using advanced thermal conversion methods (pyrolysis and gasification) that are well suited to relatively small scales of throughput. The electrical power created would either be used onsite to power the paper making process or alternatively exported to the national grid, and the surplus heat created could also be used onsite or exported to a local customer. The focus of this paper is to give a general overview of the project progress so far and will present the experimental results of the most successful thermal conversion trials carried out by this work to date. Application: The research provides both paper mills and energy providers with methodologies to condition their waste materials for conversion into useful energy. The research also opens up new markets for gasifier and pyrolysis equipment manufacturers and suppliers.
Resumo:
Activated sludge basins (ASBs) are a key-step in wastewater treatment processes that are used to eliminate biodegradable pollution from the water discharged to the natural environment. Bacteria found in the activated sludge consume and assimilate nutrients such as carbon, nitrogen and phosphorous under specific environmental conditions. However, applying the appropriate agitation and aeration regimes to supply the environmental conditions to promote the growth of the bacteria is not easy. The agitation and aeration regimes that are applied to activated sludge basins have a strong influence on the efficacy of wastewater treatment processes. The major aims of agitation by submersible mixers are to improve the contact between biomass and wastewater and the prevention of biomass settling. They induce a horizontal flow in the oxidation ditch, which can be quantified by the mean horizontal velocity. Mean values of 0.3-0.35 m s-1 are recommended as a design criteria to ensure best conditions for mixing and aeration (Da Silva, 1994). To give circulation velocities of this order of magnitude, the positioning and types of mixers are chosen from the plant constructors' experience and the suppliers' data for the impellers. Some case studies of existing plants have shown that measured velocities were not in the range that was specified in the plant design. This illustrates that there is still a need for design and diagnosis approach to improve process reliability by eliminating or reducing the number of short circuits, dead zones, zones of inefficient mixing and poor aeration. The objective of the aeration is to facilitate the quick degradation of pollutants by bacterial growth. To achieve these objectives a wastewater treatment plant must be adequately aerated; thus resulting in 60-80% of all energetic consummation being dedicated to the aeration alone (Juspin and Vasel, 2000). An earlier study (Gillot et al., 1997) has illustrated the influence that hydrodynamics have on the aeration performance as measure by the oxygen transfer coefficient. Therefore, optimising the agitation and aeration systems can enhance the oxygen transfer coefficient and consequently reduce the operating costs of the wastewater treatment plant. It is critically important to correctly estimate the mass transfer coefficient as any errors could result in the simulations of biological activity not being physically representative. Therefore, the transfer process was rigorously examined in several different types of process equipment to determine the impact that different hydrodynamic regimes and liquid-side film transfer coefficients have on the gas phase and the mass transfer of oxygen. To model the biological activity occurring in ASBs, several generic biochemical reaction models have been developed to characterise different biochemical reaction processes that are known as Activated Sludge Models, ASM (Henze et al., 2000). The ASM1 protocol was selected to characterise the impact of aeration on the bacteria consuming and assimilating ammonia and nitrate in the wastewater. However, one drawback of ASM protocols is that the hydrodynamics are assumed to be uniform by the use of perfectly mixed, plug flow reactors or as a number of perfectly mixed reactors in series. This makes it very difficult to identify the influence of mixing and aeration on oxygen mass transfer and biological activity. Therefore, to account for the impact of local gas-liquid mixing regime on the biochemical activity Computational Fluid Dynamics (CFD) was used by applying the individual ASM1 reaction equations as the source terms to a number of scalar equations. Thus, the application of ASM1 to CFD (FLUENT) enabled the investigation of the oxygen transfer efficiency and the carbon & nitrogen biological removal in pilot (7.5 cubic metres) and plant scale (6000 cubic metres) ASBs. Both studies have been used to validate the effect that the hydrodynamic regime has on oxygen mass transfer (the circulation velocity and mass transfer coefficient) and the effect that this had on the biological activity on pollutants such as ammonia and nitrate (Cartland Glover et al., 2005). The work presented here is one part to of an overall approach for improving the understanding of ASBs and the impact that they have in terms of the hydraulic and biological performance on the overall wastewater treatment process. References CARTLAND GLOVER G., PRINTEMPS C., ESSEMIANI K., MEINHOLD J., (2005) Modelling of wastewater treatment plants ? How far shall we go with sophisticated modelling tools? 3rd IWA Leading-Edge Conference & Exhibition on Water and Wastewater Treatment Technologies, 6-8 June 2005, Sapporo, Japan DA SILVA G. (1994). Eléments d'optimisation du transfert d'oxygène par fines bulles et agitateur séparé en chenal d'oxydation. PhD Thesis. CEMAGREF Antony ? France. GILLOT S., DERONZIER G., HEDUIT A. (1997). Oxygen transfer under process conditions in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers. WEFTEC, Chicago, USA. HENZE M., GUJER W., MINO T., van LOOSDRECHT M., (2000). Activated Sludge Models ASM1, ASM2, ASM2D and ASM3, Scientific and Technical Report No. 9. IWA Publishing, London, UK. JUSPIN H., VASEL J.-L. (2000). Influence of hydrodynamics on oxygen transfer in the activated sludge process. IWA, Paris - France.
Resumo:
A General Sales Agent (GSA) is an airline's outsourcing counter part that markets and manages cargo services. An empirical investigation is undertaken to ascertain whether GSAs contribute economically to the air cargo industry using three 'litmus test' indicators:1) contribution to the airline's sales and profitability by expanding o perating networks; 2) viability as a marketing option for emerging or struggling airlines to help cut operating costs to reduce prices; 3) cost-effective GSAs were found to establish an airline's market presence through wide network coverage and good local knowledge, leading to an expansion of airline's operating networks and generating greater sales revenue. Copyright © 2012 Inderscience Enterprises Ltd.
Resumo:
Context Many large organizations juggle an application portfolio that contains different applications that fulfill similar tasks in the organization. In an effort to reduce operating costs, they are attempting to consolidate such applications. Before consolidating applications, the work that is done with these applications must be harmonized. This is also known as process harmonization. Objective The increased interest in process harmonization calls for measures to quantify the extent to which processes have been harmonized. These measures should also uncover the factors that are of interest when harmonizing processes. Currently, such measures do not exist. Therefore, this study develops and validates a measurement model to quantify the level of process harmonization in an organization. Method The measurement model was developed by means of a literature study and structured interviews. Subsequently, it was validated through a survey, using factor analysis and correlations with known related constructs. Results As a result, a valid and reliable measurement model was developed. The factors that are found to constitute process harmonization are: the technical design of the business process and its data, the resources that execute the process, and the information systems that are used in the process. In addition, strong correlations were found between process harmonization and process standardization and between process complexity and process harmonization. Conclusion The measurement model can be used by practitioners, because it shows them the factors that must be taken into account when harmonizing processes, and because it provides them with a means to quantify the extent to which they succeeded in harmonizing their processes. At the same time, it can be used by researchers to conduct further empirical research in the area of process harmonization.
Resumo:
This dissertation develops a process improvement method for service operations based on the Theory of Constraints (TOC), a management philosophy that has been shown to be effective in manufacturing for decreasing WIP and improving throughput. While TOC has enjoyed much attention and success in the manufacturing arena, its application to services in general has been limited. The contribution to industry and knowledge is a method for improving global performance measures based on TOC principles. The method proposed in this dissertation will be tested using discrete event simulation based on the scenario of the service factory of airline turnaround operations. To evaluate the method, a simulation model of aircraft turn operations of a U.S. based carrier was made and validated using actual data from airline operations. The model was then adjusted to reflect an application of the Theory of Constraints for determining how to deploy the scarce resource of ramp workers. The results indicate that, given slight modifications to TOC terminology and the development of a method for constraint identification, the Theory of Constraints can be applied with success to services. Bottlenecks in services must be defined as those processes for which the process rates and amount of work remaining are such that completing the process will not be possible without an increase in the process rate. The bottleneck ratio is used to determine to what degree a process is a constraint. Simulation results also suggest that redefining performance measures to reflect a global business perspective of reducing costs related to specific flights versus the operational local optimum approach of turning all aircraft quickly results in significant savings to the company. Savings to the annual operating costs of the airline were simulated to equal 30% of possible current expenses for misconnecting passengers with a modest increase in utilization of the workers through a more efficient heuristic of deploying them to the highest priority tasks. This dissertation contributes to the literature on service operations by describing a dynamic, adaptive dispatch approach to manage service factory operations similar to airline turnaround operations using the management philosophy of the Theory of Constraints.
Resumo:
Best management practices in green lodging are sustainable or “green” business strategies designed to enhance the lodging product from the perspective of owners, operators and guests. For guests, these practices should enhance their experience while for owners and operators, generate positive returns on investments. Best management practices in green lodging typically starts with a clear understanding of each lodging firm’s role in society, its impact on the environment and strategies developed to mitigate negative environmental externalities generated from the production of lodging goods and services. Negative externalities of hotel operations manifest themselves in energy and water usage, waste generation and air pollution. Hence, best management practices in green lodging are dynamic, cost effective, innovative, stakeholder driven and environmentally sound technical and behavioral solutions that attempt to ameliorate or eliminate the negative environmental externalities associated with lodging operations, while simultaneously generate positive returns on green investments. Thus, best management practices in green lodging should reduce lodging firms’ operating costs, increase guest satisfaction, reduce or eliminate the negative environmental impacts associated with hotel operations while simultaneously enhance business operations.
Resumo:
Restaurant commissaries range the full spectrum from simple storage of food and supplies to multi-million-dollar processing plants. The author discusses the cost effectiveness of commissary units, including their operating costs, quality control, and scope.
Resumo:
During the past three decades, the use of roundabouts has increased throughout the world due to their greater benefits in comparison with intersections controlled by traditional means. Roundabouts are often chosen because they are widely associated with low accident rates, lower construction and operating costs, and reasonable capacities and delay. ^ In the planning and design of roundabouts, special attention should be given to the movement of pedestrians and bicycles. As a result, there are several guidelines for the design of pedestrian and bicycle treatments at roundabouts that increase the safety of both pedestrians and bicyclists at existing and proposed roundabout locations. Different design guidelines have differing criteria for handling pedestrians and bicyclists at roundabout locations. Although all of the investigated guidelines provide better safety (depending on the traffic conditions at a specific location), their effects on the performance of the roundabout have not been examined yet. ^ Existing roundabout analysis software packages provide estimates of capacity and performance characteristics. This includes characteristics such as delay, queue lengths, stop rates, effects of heavy vehicles, crash frequencies, and geometric delays, as well as fuel consumption, pollutant emissions and operating costs for roundabouts. None of these software packages, however, are capable of determining the effects of various pedestrian crossing locations, nor the effect of different bicycle treatments on the performance of roundabouts. ^ The objective of this research is to develop simulation models capable of determining the effect of various pedestrian and bicycle treatments at single-lane roundabouts. To achieve this, four models were developed. The first model simulates a single-lane roundabout without bicycle and pedestrian traffic. The second model simulates a single-lane roundabout with a pedestrian crossing and mixed flow bicyclists. The third model simulates a single-lane roundabout with a combined pedestrian and bicycle crossing, while the fourth model simulates a single-lane roundabout with a pedestrian crossing and a bicycle lane at the outer perimeter of the roundabout for the bicycles. Traffic data was collected at a modern roundabout in Boca Raton, Florida. ^ The results of this effort show that installing a pedestrian crossing on the roundabout approach will have a negative impact on the entry flow, while the downstream approach will benefit from the newly created gaps by pedestrians. Also, it was concluded that a bicycle lane configuration is more beneficial for all users of the roundabout instead of the mixed flow or combined crossing. Installing the pedestrian crossing at one-car length is more beneficial for pedestrians than two- and three-car lengths. Finally, it was concluded that the effect of the pedestrian crossing on the vehicle queues diminishes as the distance between the crossing and the roundabout increases. ^
Resumo:
Best management practices in green lodging are sustainable or “green” business strategies designed to enhance the lodging product from the perspective of owners, operators and guests. For guests, these practices should enhance their experience while for owners and operators, generate positive returns on investments. Best management practices in green lodging typically starts with a clear understanding of each lodging firm’s role in society, its impact on the environment and strategies developed to mitigate negative environmental externalities generated from the production of lodging goods and services. Negative externalities of hotel operations manifest themselves in energy and water usage, waste generation and air pollution. Hence, best management practices in green lodging are dynamic, cost effective, innovative, stakeholder driven and environmentally sound technical and behavioral solutions that attempt to ameliorate or eliminate the negative environmental externalities associated with lodging operations, while simultaneously generate positive returns on green investments. Thus, best management practices in green lodging should reduce lodging firms’ operating costs, increase guest satisfaction, reduce or eliminate the negative environmental impacts associated with hotel operations while simultaneously enhance business operations.
Resumo:
During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.
Resumo:
During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.
Resumo:
Government call centers (311) were first created to reduce the volume of non-emergency calls that were being placed to emergency 911 call centers. The number of 311 call centers increased from 57 in 2008 to about 300 in 2013. Considering that there are over 2,700 municipal government units across the United States, the adoption rate of the 311 centers is arguably low in the country. This dissertation is an examination of the adoption of 311 call centers by municipal governments. My focus is specifically on why municipal governments adopt 311 and identifying which barriers result in the non-adoption of 311 call centers. This dissertation is possibly the first study to examine the adoption of 311 call centers in the United States. The dissertation study has identified several significant factors in the adoption and non-adoption of 311 government call centers. The following factors were significant in the adoption of 311 government call centers: managerial support, financial constraints, organizational responsiveness, strategic plan placement, and technology champion. The following factors were significant barriers that resulted in the non-adoption of a 311 government call center; no demand from citizens, start up costs, annual operating costs, unavailability of funding, and no obvious need for one.If local government entities that do not have a 311 government call center decide to adopt one, this study will help them identify the conditions that need to be in place for successful adoption to occur. Local government officials would first need to address the barriers in setting up the 311 call centers.
Resumo:
This paper proposed the study of the treatment of a synthetic wastewater contaminated with BTX by electro-oxidation batch with the anode of Ti/PbO2, and the adsorption of BTX using expanded perlite as adsorbent material, and to evaluate the best operating conditions both methods in order to perform a sequential treatment (adsorption and electro-oxidation) and achieve greater efficiency in the removal of the compounds. The operating conditions were measured: temperature, current density and applied amount of the adsorbent material, by UV-VIS analysis and Demand Chemical oxygen demand (COD). According to the experimental results, the electro-oxidative treatment was efficient in the degradation of the compounds BTX (benzene, toluene and xylenes) in synthetic sewage due to the electrochemical properties of the anode of Ti/PbO2. The applied current density and temperature promoted increased efficiency of COD removal, reaching obtain percentages greater than 70%. In the adsorption process, the temperature increase was not a factor in the removal of organic matter, while the increase in the amount of adsorbent material led to an increase in the percentage removal, obtaining 66.30% using 2 g of adsorbent. The selected operating conditions of both treatments performed separately take into account the removal efficiency of organic matter, and the low energy consumption and operating costs, so the sequential treatment were satisfactory reaching 87.26% of COD removal using adsorption as a pretreatment. Quantification of BTX through the analysis of gas chromatography at the end of the treatments also confirmed the removal efficiency of organic compounds, giving outstanding advantages to sequential treatment.