938 resultados para Oceanic or Wilson Cycle
Resumo:
An association between long-term changes in the solar cycle and the frequency of El Niño events has been identified in historical records of El Niño and sunspot number. Although no known mechanism can explain the apparent relationship, the association is strong. A possible coupling between the sun and the ocean's mixed layer, involving ENSO, is worthy of further study.
Resumo:
Increases in fish demand in the coming decades are projected to be largely met by growth of aquaculture. However, increased aquaculture production is linked to higher demand for natural resources and energy as well as emissions to the environment. This paper explores the use of Life Cycle Assessment to improve knowledge of potential environmental impacts of future aquaculture growth. Different scenarios of future aquaculture development are taken into account in calculating the life cycle environmental impacts. The environmental impact assessments were built on Food and Agriculture Organization statistics in terms of production volume of different species, whereas the inputs and outputs associated with aquaculture production systems were sourced from the literature. The matrix of input-output databases was established through the Blue Frontiers study.
Resumo:
As the global population has increased, so have human influences on the global environment. ... How can we better understand and predict these natural and potential anthropogenic variations? One way is to develop a model that can accurately describe all the components of the hydrologic cycle, rather than just the end result variables such as precipitation and soil moisture. If we can predict and simulate variations in evaporation and moisture convergence, as well as precipitation, then we will have greater confidence in our ability to at least model precipitation variations. Therefore, we describe here just how well we can model relevant aspects of the global hydrologic cycle. In particular, we determine how well we can model the annual and seasonal mean global precipitation, evaporation, and atmospheric water vapor transport.
Resumo:
We describe a 2.5-degree gridpoint atmospheric hydrology/climatology of precipitable water, precipitation, atmospheric moisture convergence, and a residual evaporation or evapotranspiration for the coterminous United States. We also describe a large-scale surface hydrology/climatology of a residual soil moisture, streamflow divergence, or runoff, as well as precipitation and evaporation. Annual and seasonal means and interrelationships among various components of the hydrologic cycles are discussed.
Resumo:
Higher resolution time-stratigraphic records suggest correlation of lower frequency paleoclimatic events with Milankovitch obliquity/precessional cycles and of higher frequency events with the evidently resonance-related Pettersson maximum tidal force (MTF) model. Subsequently published records, mainly pollen, seemingly confirm that atmospheric resonances may have modulated past climatic changes in phase with average MTF cycles of 1668, 1112, and 556 years, as calculated in anomalistic years from planetary movements by Stacey. Stacey accepts Pettersson's dating of AD 1433 (517 YBP) for the last major perihelian spring tide based solely on calculations of moon- and earth-orbital relations to the sun. Use of AD 1433 as an origin for the tidal resonance model seemingly continues to provide a best fit for the timing of cyclical patterns in the presented paleoclimate time series.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): It is increasingly apparent that a major reorganization of the Northeast Pacific biota transpired following a climatic "regime shift" in the mid-1970s. In this paper, we characterize the effects of interdecadal climate forcing on the oceanic ecosystems of the northeastern Pacific Ocean.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Catch of coho salmon off the coast of Washington and Oregon since 1925 appears to be related to large-scale events in the atmosphere, which in turn affect ocean currents and coastal upwelling intensities in the northeastern Pacific. At least two time scales of variations can be identified. The first is that of the El Nino/Southern Oscillation phenomenon giving rise to an irregular cycle of between 3 to 7 years. ... The second time scale of variation seems to have a periodicity of about 20 years, although this is based on a limited dataset. ... This paper endeavors to describe how, if real, these atmospheric/oceanic effects are integrated and might affect the salmon catch. The possibility must also be considered that the atmospheric events are symbiotically related to the oceanic events and, further, that both may be enmeshed in even longer-term variability of climate.
Resumo:
Many types of oceanic physical phenomena have a wide range in both space and time. In general, simplified models, such as shallow water model, are used to describe these oceanic motions. The shallow water equations are widely applied in various oceanic and atmospheric extents. By using the two-layer shallow water equations, the stratification effects can be considered too. In this research, the sixth-order combined compact method is investigated and numerically implemented as a high-order method to solve the two-layer shallow water equations. The second-order centered, fourth-order compact and sixth-order super compact finite difference methods are also used to spatial differencing of the equations. The first part of the present work is devoted to accuracy assessment of the sixth-order super compact finite difference method (SCFDM) and the sixth-order combined compact finite difference method (CCFDM) for spatial differencing of the linearized two-layer shallow water equations on the Arakawa's A-E and Randall's Z numerical grids. Two general discrete dispersion relations on different numerical grids, for inertia-gravity and Rossby waves, are derived. These general relations can be used for evaluation of the performance of any desired numerical scheme. For both inertia-gravity and Rossby waves, minimum error generally occurs on Z grid using either the sixth-order SCFDM or CCFDM methods. For the Randall's Z grid, the sixth-order CCFDM exhibits a substantial improvement , for the frequency of the barotropic and baroclinic modes of the linear inertia-gravity waves of the two layer shallow water model, over the sixth-order SCFDM. For the Rossby waves, the sixth-order SCFDM shows improvement, for the barotropic and baroclinic modes, over the sixth-order CCFDM method except on Arakawa's C grid. In the second part of the present work, the sixth-order CCFDM method is used to solve the one-layer and two-layer shallow water equations in their nonlinear form. In one-layer model with periodic boundaries, the performance of the methods for mass conservation is compared. The results show high accuracy of the sixth-order CCFDM method to simulate a complex flow field. Furthermore, to evaluate the performance of the method in a non-periodic domain the sixth-order CCFDM is applied to spatial differencing of vorticity-divergence-mass representation of one-layer shallow water equations to solve a wind-driven current problem with no-slip boundary conditions. The results show good agreement with published works. Finally, the performance of different schemes for spatial differencing of two-layer shallow water equations on Z grid with periodic boundaries is investigated. Results illustrate the high accuracy of combined compact method.
Resumo:
Sea cucumbers belong to phylum Echinodermata, order Holothuroidea are an abundant and diverse group of Invertebrates, with over 1400 species occuring from the intertidal to the deepest oceanic trenches. Sea cucumbers are important components of the food chain in temperate and coral reef ecosystems and they play an important role as deposite feeders and suspension feeders. Rapid decline in populations may have serious consequences for the survival of other species that are part of the same complex food web,as the eggs, larve and juveniles constitute an important food source for the other marine species including crustaceans, fish and mollusks. In addition sea cucumbers are often called the earthworms of the sea, because they are responsible for the extensive shifting and mixing of the substrate, and recycling of detrital matter. Sea cucumbers consume and grind sediment and organic material into finer particles , turning over the top layers of sediment in lagoons , reefs and other habitats and allowing the penetration of oxygen. While the taxonomy of the holothurian families is generally well known , the distinction of similar species is difficult. There are relatively few holothurian taxonomist.Most sea cucumber species can be identified by Holothurin taxonomists by using the calcareous skeletal ossicles found in the body wall. In this study , at first a sea cucumber from Kish island in Persian gulf has recognized. Individuals collected from west and east extend far away into north and south of coral reefs by diving. I have checked them morphologically and anatomically.Then with key to the orders of the Holothuroidea, They belong to the Aspidochirotida with key to the families of Aspidochirotida, they were in Stichopodidae families and with key to the genus of Stchopodidae, they were Stichopus. Then ossicles were extracted at National Museum of Natural History, by Dr David Pawson. The ossicles were measured on a transect across a slide prepared from the mid-dorsal region of each specimen.The one we have in the shallow waters of Kish island, is Stichopus hermanni, a massive holothurian, body broad, considerably flattened ventraly ,the dorsal side slightly arched and the lateral sides almost vertical; body wall fairy thick and soft ; mouth subterminal; anus central; tentacles usually 20 in number of length and leaf shaped. Numerous ossicles consisting of table with large discs having usually 7 to 15 peripheral holes, but often irregular or incomplete and spire of moderate height ending in a group of spinelets, rosettes of variable development, and c-shaped rods. Color (exept papillae)partly remained after preservation in alcohol which is found at the depth of 4 to 8 meters, on coral reef. Furthermore, the sexual reproductive cycle was described using standard methods. Gonads were removed and transferred to Bouin's fixative for four weeks and then processed according to standard embedding technique. To prevent the loss of tubule contents during embedding, the tubule sections, were cut well beyond the segment selected for sectioning. For each individual, six sections, each section with 5µm diameter by microtome were cut from tubules. These sections were first placed on gelatin coated slides (the gelatin was heated to 42°c) and then transferred to the oven at 37°c for one hour. This technique usually prevents the fragil tubules from breaking and the loss of gametes. The slides were stained with Eosin and Hematoxylin, and good resolution of the various cell types achieved.A second series of slides was stained with the Periodic Acid Schiff(PAS) to identify polysaccharides(glycogen). Monthly sampling was occurred.The sexual reproductive cycle was defined through the combined use of these criteria: Monthly percentages of the gonad stages for each sex, the monthly gonad index (GI) , given as the ratio of the wet gonad weight (G) to the dray weight (DW)and the monthly percentage of individuals that undetermined sex. The gonad consists of two tufts of tubules on which saccules develop. Gonadal development was classified into five stages: post spawning, recovery, growth, advanced growth, and mature stage that were adapted from the earlier studies of holothurians. Histological preparations showed that the sex of larger individuals could be identified by the presence of oogonia and young oocytes in females, and spermatogonic stages in males.The mean diameter of the tubules and gonadal mass follow annual cycles, increasing from late winter through spring, and dropping abruptly after spawning in the summer. Gametogenesis is generally a prolongate process and begins in March. By summer the ovarian tubules contain oocytes with diameter of 120-240 pm and the testicular tubules contain an abundance of spermatozoa (diameter 5-6 gm ).Following spawning the predominant activity within the spent tubules is phagocytosis of the residual gamets.The active phase of gametogenesis (March to July), coincides with an increasing photoperiod regim, and an accelerated gametogenesis occurs in July when temperature is high. Throughout the year, the gonad of Stichopus hermanni is larger in males than in females, and this is due to the number of tubules in the testis rather than to tubules length or diameter.
Resumo:
Introducing a "Cheaper, Faster, Better" product in today's highly competitive market is a challenging target. Therefore, for organizations to improve their performance in this area, they need to adopt methods such as process modelling, risk mitigation and lean principles. Recently, several industries and researchers focused efforts on transferring the value orientation concept to other phases of the Product Life Cycle (PLC) such as Product Development (PD), after its evident success in manufacturing. In PD, value maximization, which is the main objective of lean theory, has been of particular interest as an improvement concept that can enhance process flow logistics and support decision-making. This paper presents an ongoing study of the current understanding of value thinking in PD (VPD) with a focus on value dimensions and implementation benefits. The purpose of this study is to consider the current state of knowledge regarding value thinking in PD, and to propose a definition of value and a framework for analyzing value delivery. The framework-named the Value Cycle Map (VCM)- intends to facilitate understanding of value and its delivery mechanism in the context of the PLC. We suggest the VCM could be used as a foundation for future research in value modelling and measurement in PD.
Resumo:
In this paper, we consider Kalman filtering over a network and construct the optimal sensor data scheduling schemes which minimize the sensor duty cycle and guarantee a bounded error or a bounded average error at the remote estimator. Depending on the computation capability of the sensor, we can either give a closed-form expression of the minimum sensor duty cycle or provide tight lower and upper bounds of it. Examples are provided throughout the paper to demonstrate the results. © 2012 IEEE.
Resumo:
Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.
Resumo:
In this work, we investigate a number of fuel assembly design options for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on axially heterogeneous fuel assembly structure in order to improve fertile to fissile conversion ratio. One of the main assumptions of the current study was to restrict the fuel assembly geometry to a single axial fissile zone "sandwiched" between two fertile blanket zones. The main objective was to study the effect of the most important design parameters, such as dimensions of fissile and fertile zones and average void fraction, on the net breeding of 233U. The main design challenge in this respect is that the fuel breeding potential is at odds with axial power peaking and therefore limits the maximum achievable core power rating. The calculations were performed with BGCore system, which consists of MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly with reflective radial boundaries was modeled applying simplified restrictions on maximum central line fuel temperature and Critical Power Ratio. It was found that axially heterogeneous fuel assembly design with single fissile zone can potentially achieve net breeding. In this case however, the achievable core power density is roughly one third of the reference BWR core.
Resumo:
This study explores the basic possibility of achieving a self-sustainable Th-U233 fuel cycle that can be adopted in the current generation of Pressurized Water Reactors. This study outlines some fuel design strategies to achieve (or to approach as closely as possible) a sustainable fuel cycle. Major design tradeoffs in the core design are discussed. Preliminary neutronic analysis performed on the fuel assembly level with BOXER computer code suggests that net breeding of U233 is feasible in principle within a typical PWR operating envelope. However, some reduction in the core power density and/or shorter than typical fuel cycle length would most likely be required in order to achieve such performance.