882 resultados para Obnoxious facility location
Resumo:
Previous covering models for emergency service consider all the calls to be of the sameimportance and impose the same waiting time constraints independently of the service's priority.This type of constraint is clearly inappropriate in many contexts. For example, in urban medicalemergency services, calls that involve danger to human life deserve higher priority over calls formore routine incidents. A realistic model in such a context should allow prioritizing the calls forservice.In this paper a covering model which considers different priority levels is formulated andsolved. The model heritages its formulation from previous research on Maximum CoverageModels and incorporates results from Queuing Theory, in particular Priority Queuing. Theadditional complexity incorporated in the model justifies the use of a heuristic procedure.
Resumo:
The paper presents a new model based on the basic Maximum Capture model,MAXCAP. The New Chance Constrained Maximum Capture modelintroduces astochastic threshold constraint, which recognises the fact that a facilitycan be open only if a minimum level of demand is captured. A metaheuristicbased on MAX MIN ANT system and TABU search procedure is presented tosolve the model. This is the first time that the MAX MIN ANT system isadapted to solve a location problem. Computational experience and anapplication to 55 node network are also presented.
Resumo:
A new direction of research in Competitive Location theory incorporatestheories of Consumer Choice Behavior in its models. Following thisdirection, this paper studies the importance of consumer behavior withrespect to distance or transportation costs in the optimality oflocations obtained by traditional Competitive Location models. To dothis, it considers different ways of defining a key parameter in thebasic Maximum Capture model (MAXCAP). This parameter will reflectvarious ways of taking into account distance based on several ConsumerChoice Behavior theories. The optimal locations and the deviation indemand captured when the optimal locations of the other models are usedinstead of the true ones, are computed for each model. A metaheuristicbased on GRASP and Tabu search procedure is presented to solve all themodels. Computational experience and an application to 55-node networkare also presented.
Resumo:
Report of the Recreational Facility Revenue Bond Funds of Iowa State University of Science and Technology as of and for the year ended June 30, 2008
Resumo:
Report of the Student Health Facility Revenue Bond Funds of Iowa State University of Science and Technology as of and for the year ended June 30, 2008
Resumo:
Report of the Ice Arena Facility Revenue Note Funds of Iowa State University of Science and Technology as of and for the year ended June 30, 2008
Resumo:
Report of the Indoor Multipurpose Use and Training Facility Revenue Bond Funds of Iowa State University of Science and Technology as of and for the year ended June 30, 2008
Resumo:
Report of the Regulated Materials Facility Revenue Bond Funds of Iowa State University of Science and Technology as of and for the year ended June 30, 2008
Resumo:
In this paper we propose a metaheuristic to solve a new version of the Maximum CaptureProblem. In the original MCP, market capture is obtained by lower traveling distances or lowertraveling time, in this new version not only the traveling time but also the waiting time willaffect the market share. This problem is hard to solve using standard optimization techniques.Metaheuristics are shown to offer accurate results within acceptable computing times.
Resumo:
New location models are presented here for exploring the reduction of facilities in aregion. The first of these models considers firms ceding market share to competitorsunder situations of financial exigency. The goal of this model is to cede the leastmarket share, i.e., retain as much of the customer base as possible while sheddingcostly outlets. The second model considers a firm essentially without competition thatmust shrink it services for economic reasons. This firm is assumed to close outlets sothat the degradation of service is limited. An example is offered within a competitiveenvironment to demonstrate the usefulness of this modeling approach.
Resumo:
Models are presented for the optimal location of hubs in airline networks, that take into consideration the congestion effects. Hubs, which are the most congested airports, are modeled as M/D/c queuing systems, that is, Poisson arrivals, deterministic service time, and {\em c} servers. A formula is derived for the probability of a number of customers in the system, which is later used to propose a probabilistic constraint. This constraint limits the probability of {\em b} airplanes in queue, to be lesser than a value $\alpha$. Due to the computational complexity of the formulation. The model is solved using a meta-heuristic based on tabu search. Computational experience is presented.
Resumo:
In this paper we address the issue of locating hierarchical facilities in the presence of congestion. Two hierarchical models are presented, where lower level servers attend requests first, and then, some of the served customers are referred to higher level servers. In the first model, the objective is to find the minimum number of servers and theirlocations that will cover a given region with a distance or time standard. The second model is cast as a Maximal Covering Location formulation. A heuristic procedure is then presented together with computational experience. Finally, some extensions of these models that address other types of spatial configurations are offered.
Resumo:
We propose a model and solution methods, for locating a fixed number ofmultiple-server, congestible common service centers or congestible publicfacilities. Locations are chosen so to minimize consumers congestion (orqueuing) and travel costs, considering that all the demand must be served.Customers choose the facilities to which they travel in order to receiveservice at minimum travel and congestion cost. As a proxy for thiscriterion, total travel and waiting costs are minimized. The travel costis a general function of the origin and destination of the demand, whilethe congestion cost is a general function of the number of customers inqueue at the facilities.
Resumo:
This guide is a general outline for bio diesel facilities on potential regulatory requirements and regulatory agency approval times. Much of the information is related to environmental permitting by the Iowa Department of Natural Resources (IDNR). Your facility’s permit requirements may differ depending upon the specific operations planned. Information is also provided about regulatory requirements administered by the Iowa Workforce Development, Labor Services Division and the Iowa Department of Public Safety, Fire Marshal Division. Requirements established by local units of government may also apply. Be sure to contact the city in which the facility will be located or the county if the facility is not located in a city, to identify these requirements.
Resumo:
This guide is a general outline for ethanol facilities on potential regulatory requirements and regulatory agency approval times. Much of the information is related to environmental permitting by the Iowa Department of Natural Resources (IDNR). Your facility’s permit requirements may differ depending upon the specific operations planned. Information is also provided about regulatory requirements administered by the Iowa Workforce Development, Labor Services Division and the Iowa Department of Public Safety, Fire Marshal Division. Requirements established by local units of government may also apply. Be sure to contact the city in which the facility will be located or the county if the facility is not located in a city, to identify these requirements.