949 resultados para OXYGEN-UPTAKE KINETICS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Buchheit, M, Al Haddad, H, Millet GP, Lepretre, PM, Newton, M, and Ahmaidi, S. Cardiorespiratory and cardiac autonomic responses to 30-15 Intermittent Fitness Test in team sport players. J Strength Cond Res 23(1): xxx-xxx, 2009-The 30-15 Intermittent Fitness Test (30-15IFT) is an attractive alternative to classic continuous incremental field tests for defining a reference velocity for interval training prescription in team sport athletes. The aim of the present study was to compare cardiorespiratory and autonomic responses to 30-15IFT with those observed during a standard continuous test (CT). In 20 team sport players (20.9 +/- 2.2 years), cardiopulmonary parameters were measured during exercise and for 10 minutes after both tests. Final running velocity, peak lactate ([La]peak), and rating of perceived exertion (RPE) were also measured. Parasympathetic function was assessed during the postexercise recovery phase via heart rate (HR) recovery time constant (HRRtau) and HR variability (HRV) vagal-related indices. At exhaustion, no difference was observed in peak oxygen uptake (&OV0312;o2peak), respiratory exchange ratio, HR, or RPE between 30-15IFT and CT. In contrast, 30-15IFT led to significantly higher minute ventilation, [La]peak, and final velocity than CT (p < 0.05 for all parameters). All maximal cardiorespiratory variables observed during both tests were moderately to well correlated (e.g., r = 0.76, p = 0.001 for &OV0312;o2peak). Regarding ventilatory thresholds (VThs), all cardiorespiratory measurements were similar and well correlated between the 2 tests. Parasympathetic function was lower after 30-15IFT than after CT, as indicated by significantly longer HHRtau (81.9 +/- 18.2 vs. 60.5 +/- 19.5 for 30-15IFT and CT, respectively, p < 0.001) and lower HRV vagal-related indices (i.e., the root mean square of successive R-R intervals differences [rMSSD]: 4.1 +/- 2.4 and 7.0 +/- 4.9 milliseconds, p < 0.05). In conclusion, the 30-15IFT is accurate for assessing VThs and &OV0312;o2peak, but it alters postexercise parasympathetic function more than a continuous incremental protocol.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Exhausting exercise reduces the mitochondrial DNA (mtDNA) content in the skeletal muscle of healthy subjects due to oxidative damage. Since patients with chronic obstructive pulmonary disease (COPD) suffer enhanced oxidative stress during exercise, it was hypothesised that the mtDNA content will be further reduced. Objective To investigate the effects of exercise above and below the lactate threshold (LT) on the mtDNA content of skeletal muscle of patients with COPD. Methods Eleven patients with COPD (676 8 years; forced expiratory volume in 1s (FEV1)456 8%ref) and 10 healthy controls (666 4 years; FEV1 906 7% ref) cycled 45 min above LT (65% peak oxygen uptake (V9O2 peak)and another 7 patients (656 6 years; FEV1 506 4%ref)and 7 controls (566 9 years;FEV1 926 6%ref) cycled 45 min below their LT (50% V9O2 peak). Biopsies from the vastus lateralis muscle were obtained before exercise, immediately after and 1 h, 1 day and 1 week later to determine by PCR the mtDNA/nuclear DNA (nDNA) ratio (a marker of mtDNA content) and the expression of the peroxisome proliferator-activated receptor- g coactivator-1 a (PGC-1a)mRNA and the amount of reactive oxygen species produced during exercise was estimated from total V9O2. Results Skeletal muscle mtDNA/nDNA fell significantly after exercise above the LT both in controls and in patients with COPD, but the changes were greater in those with COPD. These changes correlated with production of reactive oxygen species, increases in manganese superoxide dismutase and PGC-1 a mRNA and returned to baseline values 1 week later. This pattern of response wa was also observed, albeit minimised, in patients exercising below the LT. Conclusions In patients with COPD, exercise enhances the decrease in mtDNA content of skeletal muscle and the expression of PGC-1 a mRNA seen in healthy subjects probably due to oxidative stress.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: Optimal high-intensity interval training (HIIT) regimens for running performance are unknown, although most protocols result in some benefit to key performance factors (running economy (RE), anaerobic threshold (AT), or maximal oxygen uptake (V˙O2max)). Lower-body positive pressure (LBPP) treadmills offer the unique possibility to partially unload runners and reach supramaximal speeds. We studied the use of LBPP to test an overspeed HIIT protocol in trained runners. METHODS: Eleven trained runners (35 ± 8 yr, V˙O2max, 55.7 ± 6.4 mL·kg·min) were randomized to an LBPP (n = 6) or a regular treadmill (CON, n = 5), eight sessions over 4 wk of HIIT program. Four to five intervals were run at 100% of velocity at V˙O2max (vV˙O2max) during 60% of time to exhaustion at vV˙O2max (Tlim) with a 1:1 work:recovery ratio. Performance outcomes were 2-mile track time trial, V˙O2max, vV˙O2max, vAT, Tlim, and RE. LBPP sessions were carried out at 90% body weight. RESULTS: Group-time effects were present for vV˙O2max (CON, 17.5 vs. 18.3, P = 0.03; LBPP, 19.7 vs. 22.3 km·h; P < 0.001) and Tlim (CON, 307.0 vs. 404.4 s, P = 0.28; LBPP, 444.5 vs. 855.5, P < 0.001). Simple main effects for time were present for field performance (CON, -18; LBPP, -25 s; P = 0.002), V˙O2max (CON, 57.6 vs. 59.6; LBPP, 54.1 vs. 55.1 mL·kg·min; P = 0.04) and submaximal HR (157.7 vs. 154.3 and 151.4 vs. 148.5 bpm; P = 0.002). RE was unchanged. CONCLUSIONS: A 4-wk HIIT protocol at 100% vV˙O2max improves field performance, vV˙O2max, V˙O2max and submaximal HR in trained runners. Improvements are similar if intervals are run on a regular treadmill or at higher speeds on a LPBB treadmill with 10% body weight reduction. LBPP could provide an alternative for taxing HIIT sessions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Ski mountaineering is an increasingly popular winter sport and leisure activity. Elite athletes practice this sport with a high level of professionalism, but so far little scientific evidence was available to support their approach. The main aim of this work was to develop a specific knowledge about ski mountaineering, allowing providing specific recommendations for the practice. Methods: First we investigated energy cost (EC) and vertical energy cost (ECv). These two parameters were estimated with oxygen uptake, at different gradients (7 to 33%) and different speeds (2 to 7 km·∙h-­‐1) on treadmill with roller skis and on snow with ski mountaineering gear. Then we assessed energy expenditure (EE) during a long duration ski mountaineering event by measuring heart rate and altitude all along the race and associating them with an EE. The EE was compared with the energy intake during the race. Hydration level was estimated by comparing body weight immediately before and after the race. The energy intake during the 4 days preceding the race was estimated with food diaries and compared with the guidelines. Results/discussion: EC and ECv of ski mountaineering were very high and varied with gradient and speed. ECv decreased between 7 and 33% and with increasing speed at steep gradients. For a 5 h 51 ± 53 min race, the mean EE was 22.6 ± 2.6 MJ. The energy intake covered 20 ± 7% of the EE and was about 14% lower than the recommendations. No significant dehydration was observed. For the longest (53 km) race, we can extrapolate the EE as about 40 MJ. Before the race the energy intake and especially the carbohydrate intake were far under the guidelines (83 ± 17% and 46 ± 13% of the recommendations). Conclusions: EC and EE of ski mountaineering are very high. To minimize the EE to reach the top of a mountain and optimize the performance, the skier should choose a steep gradient and combine this steep gradient with a fast speed. The CHO intake should be increased during but, also before the race while the fluid intake seemed to be adequate. -- Introduction : Le ski-­‐alpinisme est un sport d'hiver qui s'est particulièrement développé durant les dernières décennies : de plus en plus de personnes pratiquent cette activité dans un cadre de loisirs et de plus en plus d'athlètes d'élite prennent part à des compétitions qu'ils préparent avec un haut degré de professionnalisme. Cependant, les connaissances scientifiques restent limitées et les athlètes ne disposent pas de recommandations précises et spécifiques. Le but principal de ce travail est donc de développer un savoir spécifique sur le ski-­‐alpinisme, ce qui devrait permettre d'établir des recommandations pour la pratique. Méthode : Le coût énergétique (CE) et le coût énergétique vertical (CEv) du ski-­‐alpinisme ont été calculés en mesurant la consommation d'oxygène à différentes pentes (7 à 33%) et vitesses (2 à 6.8 km·∙h-­‐1) sur tapis roulant avec des skis à roulettes et sur le terrain avec des skis de randonnée. Ensuite, la dépense énergétique (DE) d'une course de ski-­‐alpinisme de longue durée a été évaluée en mesurant la fréquence cardiaque et l'altitude en continu. La DE a été comparée à l'énergie consommée par les ravitaillements. Des carnets alimentaires ont permis d'estimer la consommation d'énergie (boissons et nourriture) pendant les 4 jours précédant la course. Résultats/discussion : Le CE du ski-­‐alpinisme est très élevé. Le CEv diminue entre 2 et 6 km·∙h-­‐1 et entre 7 et 33%. Pour une course de 5 h 51 ± 53 min (26 km), la DE était de 22.6 ± 2.6 MJ, alors que, pour le grand parcours de la Patrouille des Glaciers (53 km), elle serait d'environ 40 MJ. La consommation d'énergie, pendant le parcours de 26 km, couvrait 20 ± 7% de la DE et était inférieure de 14% aux recommandations, alors qu'aucune déshydratation significative n'était constatée. Les jours précédant la course, la consommation d'énergie et surtout d'hydrates de carbone était bien inférieure aux quantités recommandées (83 ± 17% et 46 ± 13% des recommandations). Conclusion : Le CE et la DE étaient très élevés. Pour minimiser la dépense lors d'une ascension, il faut combiner pente et vitesse élevées. La consommation d'hydrates de carbone devrait être massivement augmentée avant et pendant la course, alors que l'hydratation semble adéquate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: We aimed to a) introduce a new Test to Exhaustion Specific to Tennis (TEST) and compare performance (test duration) and physiological responses to those obtained during the 20-m multistage shuttle test (MSST), and b) determine to which extent those variables correlate with performance level (tennis competitive ranking) for both test procedures. METHODS: Twenty-seven junior players (8 males, 19 females) members of the national teams of the French Tennis Federation completed MSST and TEST, including elements of the game (ball hitting, intermittent activity, lateral displacement), in a randomized order. Cardiorespiratory responses were compared at submaximal (respiratory compensation point) and maximal loads between the two tests. RESULTS: At the respiratory compensation point oxygen uptake (50.1 +/- 4.7 vs. 47.5 +/- 4.3 mL.min-1.kg-1, p = 0.02), but not minute ventilation and heart rate, was higher for TEST compared to MSST. However, load increment and physiological responses at exhaustion did not differ between the two tests. Players' ranking correlated negatively with oxygen uptake measured at submaximal and maximal loads for both TEST (r = -0.41; p = 0.01 and -0.55; p = 0.004) and MSST (r = -0.38; P = 0.05 and -0.51; p = 0.1). CONCLUSION: Using TEST provides a tennis-specific assessment of aerobic fitness and may be used to prescribe aerobic exercise in a context more appropriate to the game than MSST. Results also indicate that VO2 values both at submaximal and maximal load reached during TEST and MSST are moderate predictors of players competitive ranking.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a previous work, a hybrid system consisting of an advanced oxidation process (AOP) named Photo-Fenton (Ph-F) and a fixed bed biological treatment operating as a sequencing batch biofilm reactor (SBBR) was started-up and optimized to treat 200 mg·L-1 of 4-chlorophenol (4-CP) as a model compound. In this work, studies of reactor stability and control as well as microbial population determination by molecular biology techniques were carried out to further characterize and control the biological reactor. Results revealed that the integrated system was flexible and even able to overcome toxic shock loads. Oxygen uptake rate (OUR) in situ was shown to be a valid tool to control the SBBR operation, to detect toxic conditions to the biomass, and to assess the recovery of performance. A microbial characterization by 16S rDNA sequence analysis reveals that the biological population was varied, although about 30% of the bacteria belonged to the Wautersia genus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adsorption of two herbicides, atrazine and picloram, displaying different sorption characteristics, were evaluated for O (organic) horizon samples collected from SMZs (streamside management zones) in Piedmont (Ultisol) of Georgia, USA. Samples were randomly collected from within 5 SMZs selected for a study of surface flow in field trials. The five SMZs represented five different slope classes, 2, 5, 10, 15 and 20%. Results indicate that 0 horizons have the potential for sorbing atrazine from surface water moving through forested SMZs. Atrazine adsorption was nearly linear over a 24-hour period. Equilibrium adsorption, determined through 24-hour laboratory tests, resulted in a Freundlich coefficient of 67.5 for atrazine. For picloram, negative adsorption was observed in laboratory experiments. This seemed to be due to interference with ELISA analyses; however, this was not confirmed. The adsorption coefficient (Kd) obtained for atrazine in 0 horizons was greater than it would have been expected for mineral soil (from 1 to 4). Picloram was not sorbed in 0 horizons at any significant degree. Although there is a significant potential for the direct adsorption of soluble forms of herbicides in SMZs, the actual value of this adsorption for protecting water is likely to be limited even for relatively strongly sorbed chemicals, such as atrazine, due to relatively slow uptake kinetics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of Ca2+ on hepatic gluconeogenesis was measured in the isolated perfused rat liver at different cytosolic NAD+-NADH potentials. Lactate and pyruvate were the gluconeogenic substrates and the cytosolic NAD+-NADH potentials were changed by varying the lactate to pyruvate ratios from 0.01 to 100. The following results were obtained: a) gluconeogenesis from lactate plus pyruvate was not affected by Ca2+-free perfusion (no Ca2+ in the perfusion fluid combined with previous depletion of the intracellular pools); gluconeogenesis was also poorly dependent on the lactate to pyruvate ratios in the range of 0.1 to 100; only for a ratio equal to 0.01 was a significantly smaller gluconeogenic activity observed in comparison to the other ratios. b) In the presence of Ca2+, the increase in oxygen uptake caused by the infusion of lactate plus pyruvate at a ratio equal to 10 was the most pronounced one; in Ca2+-free perfusion the increase in oxygen uptake caused by lactate plus pyruvate infusion tended to be higher for all lactate to pyruvate ratios; the most pronounced difference was observed for a lactate/pyruvate ratio equal to 1. c) In the presence of Ca2+ the effects of glucagon on gluconeogenesis showed a positive correlation with the lactate to pyruvate ratios; for a ratio equal to 0.01 no stimulation occurred, but in the 0.1 to 100 range stimulation increased progressively, producing a clear parabolic dependence between the effects of glucagon and the lactate to pyruvate ratio. d) In the absence of Ca2+ the relationship between the changes caused by glucagon in gluconeogenesis and the lactate to pyruvate ratio was substantially changed; the dependence curve was no longer parabolic but sigmoidal in shape with a plateau beginning at a lactate/pyruvate ratio equal to 1; there was inhibition at the lactate to pyruvate ratios of 0.01 and 0.1 and a constant stimulation starting with a ratio equal to 1; for the lactate to pyruvate ratios of 10 and 100, stimulation caused by glucagon was much smaller than that found when Ca2+ was present. e) The effects of glucagon on oxygen uptake in the presence of Ca2+ showed a parabolic relationship with the lactate to pyruvate ratios which was closely similar to that found in the case of gluconeogenesis; the only difference was that inhibition rather than stimulation of oxygen uptake was observed for a lactate to pyruvate ratio equal to 0.01; progressive stimulation was observed in the 0.1 to 100 range. f) In the absence of Ca2+ the effects of glucagon on oxygen uptake were different; the dependence curve was sigmoidal at the onset, with a well-defined maximum at a lactate to pyruvate ratio equal to 1; this maximum was followed by a steady decline at higher ratios; at the ratios of 0.01 and 0.1 inhibition took place; oxygen uptake stimulation caused by glucagon was generally lower in the absence of Ca2+ except when the lactate to pyruvate ratio was equal to 1. The results of the present study demonstrate that stimulation of gluconeogenesis by glucagon depends on Ca2+. However, Ca2+ is only effective in helping gluconeogenesis stimulation by glucagon at highly negative redox potentials of the cytosolic NAD+-NADH system. The triple interdependence of glucagon-Ca2+-NAD+-NADH redox potential reveals highly complex interrelations that can only be partially understood at the present stage of knowledge

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogen peroxide (H2O2) perfused into the aorta of the isolated rat heart induces a positive inotropic effect, with cardiac arrhythmia such as extrasystolic potentiation or cardiac contractures, depending on the dose. The last effect is similar to the "stone heart" observed in reperfusion injury and may be ascribed to lipoperoxidation (LPO) of the membrane lipids, to protein damage, to reduction of the ATP level, to enzymatic alterations and to cardioactive compounds liberated by LPO. These effects may result in calcium overload of the cardiac fibers and contracture ("stone heart"). Hearts from male Wistar rats (300-350 g) were perfused at 31oC with Tyrode, 0.2 mM trolox C, 256 mM H2O2 or trolox C + H2O2. Cardiac contractures (baseline elevation of the myograms obtained) were observed when hearts were perfused with H2O2 (Tyrode: 5.9 ± 3.2; H2O2: 60.5 ± 13.9% of the initial value); perfusion with H2O2 increased the LPO of rat heart homogenates measured by chemiluminescence (Tyrode: 3,199 ± 259; H2O2: 5,304 ± 133 cps mg protein-1 60 min-1), oxygen uptake (Tyrode: 0.44 ± 0.1; H2O2: 3.2 ± 0.8 nmol min-1 mg protein-1) and malonaldehyde (TBARS) formation (Tyrode: 0.12 ± 0; H2O2: 0.37 ± 0.1 nmol/ml). Previous perfusion with 0.2 mM trolox C reduced the LPO (chemiluminescence: 4,098 ± 531), oxygen uptake (0.51 ± 0) and TBARS (0.13 ± 0) but did not prevent the H2O2-induced contractures (33.3 ± 16%). ATP (Tyrode: 2.84 ± 0; H2O2: 0.57 ± 0) and glycogen levels (Tyrode: 0.46 ± 0; H2O2: 0.26 ± 0) were reduced by H2O2. Trolox did not prevent these effects (ATP: 0.84 ± 0 and glycogen: 0.27 ± 0). Trolox C is known to be more effective than a -tocopherol or g -tocopherol in reducing LPO though it lacks the phytol portion of vitamin E to be fixed to the cell membranes. Trolox C, unlike vitamin A, did not prevent the glycogen reduction induced by H2O2. Trolox C induced a positive chronotropic effect that resulted in higher energy consumption. The reduction of energy level seemed to be more important than LPO in the mechanism of H2O2-induced contracture

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the evaluation of exercise intolerance of patients with respiratory diseases the American Medical Association (AMA) and the American Thoracic Society (ATS) have proposed similar classifications for rating aerobic impairment using maximum oxygen uptake (VO2max) normalized for total body weight (ml min-1 kg-1). However, subjects with the same VO2max weight-corrected values may have considerably different losses of aerobic performance (VO2max expressed as % predicted). We have proposed a new, specific method for rating loss of aerobic capacity (VO2max, % predicted) and we have compared the two classifications in a prospective study involving 75 silicotic claimants. Logistic regression analysis showed that the disagreement between rating systems (higher dysfunction by the AMA/ATS classification) was associated with age >50 years (P<0.005) and overweight (P = 0.04). Interestingly, clinical (dyspnea score) and spirometric (FEV1) normality were only associated with the VO2max, % predicted, normal values (P<0.01); therefore, in older and obese subjects the AMA/ATS classification tended to overestimate the aerobic dysfunction. We conclude that in the evaluation of aerobic impairment in patients with respiratory diseases, the loss of aerobic capacity (VO2max, % predicted) should be used instead of the traditional method (remaining aerobic ability, VO2max, in ml min-1 kg-1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon monoxide diffusing capacity (DLCO) or transfer factor (TLCO) is a particularly useful test of the appropriateness of gas exchange across the lung alveolocapillary membrane. With the purpose of establishing predictive equations for DLCO using a non-smoking sample of the adult Brazilian population, we prospectively evaluated 100 subjects (50 males and 50 females aged 20 to 80 years), randomly selected from more than 8,000 individuals. Gender-specific linear prediction equations were developed by multiple regression analysis with single breath (SB) absolute and volume-corrected (VA) DLCO values as dependent variables. In the prediction equations, age (years) and height (cm) had opposite effects on DLCOSB (ml min-1 mmHg-1), independent of gender (-0.13 (age) + 0.32 (height) - 13.07 in males and -0.075 (age) + 0.18 (height) + 0.20 in females). On the other hand, height had a positive effect on DLCOSB but a negative one on DLCOSB/VA (P<0.01). We found that the predictive values from the most cited studies using predominantly Caucasian samples were significantly different from the actually measured values (P<0.05). Furthermore, oxygen uptake at maximal exercise (VO2max) correlated highly to DLCOSB (R = 0.71, P<0.001); this variable, however, did not maintain an independent role to explain the VO2max variability in the multiple regression analysis (P>0.05). Our results therefore provide an original frame of reference for either DLCOSB or DLCOSB/VA in Brazilian males and females aged 20 to 80 years, obtained from the standardized single-breath technique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effect of the level of injury on the serum level of norepinephrine (Nor) and epinephrine (Epi) at rest and after maximal exercise in individuals with paraplegia. Twenty-six male spinal cord-injured subjects with complete paraplegia for at least 9 months were divided into two groups of 13 subjects each according to the level of injury, i.e., T1-T6 and T7-T12. Serum Nor and Epi concentrations were measured by HPLC-ECD, at rest (PRE) and immediately after a maximal ergospirometric test (POST). Statistical analysis was performed using parametric and non-parametric tests. Maximal heart rate, peak oxygen uptake, and PRE and POST Nor were lower in the T1-T6 than in the T7-T12 group (166 ± 28 vs 188 ± 10 bpm; 18.0 ± 6.0 vs 25.8 ± 4.1 ml kg-1 min-1; 0.54 ± 0.26 vs 0.99 ± 0.47 nM; 1.48 ± 1.65 vs 3.07 ± 1.44 nM). Both groups presented a significant increase in Nor level after exercise, while only the T7-T12 group showed a significant increase in Epi after exercise (T1-T6: 0.98 ± 0.72 vs 1.11 ± 1.19 nM; T7-T12: 1.24 ± 1.02 vs 1.89 ± 1.57 nM). These data show that individuals with paraplegia above T6 have an attentuated catecholamine release at rest and response to exercise as compared to subjects with injuries below T6, which might prevent a better exercise performance in the former group.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of exercise and water replacement on intraocular pressure (IOP) have not been well established. Furthermore, it is not known whether the temperature of the fluid ingested influences the IOP response. In the present study we determined the effect of water ingestion at three temperatures (10, 24 and 38ºC; 600 ml 15 min before and 240 ml 15, 30 and 45 min after the beginning of each experimental session) on the IOP of six healthy male volunteers (age = 24.0 ± 3.5 years, weight = 67.0 ± 4.8 kg, peak oxygen uptake (VO2peak) = 47.8 ± 9.1 ml kg-1 min-1). The subjects exercised until exhaustion on a cycle ergometer at a 60% VO2peak in a thermoneutral environment. IOP was measured before and after exercise and during recovery (15, 30 and 45 min) using the applanation tonometry method. Skin and rectal temperatures, heart rate and oxygen uptake were measured continuously. IOP was similar for the right eye and the left eye and increased post-water ingestion under both exercising and resting conditions (P<0.05) but did not differ between resting and exercising situations, or between the three water temperatures. Time to exhaustion was not affected by the different water temperatures. Rectal temperature, hydration status, heart rate, oxygen uptake, carbon dioxide extraction and lactate concentration were increased by exercise but were not affected by water temperature. We conclude that IOP was not affected by exercise and that water ingestion increased IOP as expected, regardless of water temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanisms underlying the loss of resting bradycardia with detraining were studied in rats. The relative contribution of autonomic and non-autonomic mechanisms was studied in 26 male Wistar rats (180-220 g) randomly assigned to four groups: sedentary (S, N = 6), trained (T, N = 8), detrained for 1 week (D1, N = 6), and detrained for 2 weeks (D2, N = 6). T, D1 and D2 were treadmill trained 5 days/week for 60 min with a gradual increase towards 50% peak VO2. After the last training session, D1 and D2 were detrained for 1 and 2 weeks, respectively. The effect of the autonomic nervous system in causing training-induced resting bradycardia and in restoring heart rate (HR) to pre-exercise training level (PET) with detraining was examined indirectly after cardiac muscarinic and adrenergic receptor blockade. T rats significantly increased peak VO2 by 15 or 23.5% when compared to PET and S rats, respectively. Detraining reduced peak VO2 in both D1 and D2 rats by 22% compared to T rats, indicating loss of aerobic capacity. Resting HR was significantly lower in T and D1 rats than in S rats (313 ± 6.67 and 321 ± 6.01 vs 342 ± 12.2 bpm) and was associated with a significantly decreased intrinsic HR (368 ± 6.1 and 362 ± 7.3 vs 390 ± 8 bpm). Two weeks of detraining reversed the resting HR near PET (335 ± 6.01 bpm) due to an increased intrinsic HR in D2 rats compared with T and D1 rats (376 ± 8.8 bpm). The present study provides the first evidence of intrinsic HR-mediated loss of resting bradycardia with detraining in rats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Patients with heart failure who have undergone partial left ventriculotomy improve resting left ventricular systolic function, but have limited functional capacity. We studied systolic and diastolic left ventricular function at rest and during submaximal exercise in patients with previous partial left ventriculotomy and in patients with heart failure who had not been operated, matched for maximal and submaximal exercise capacity. Nine patients with heart failure previously submitted to partial left ventriculotomy were compared with 9 patients with heart failure who had not been operated. All patients performed a cardiopulmonary exercise test with measurement of peak oxygen uptake and anaerobic threshold. Radionuclide left ventriculography was performed to analyze ejection fraction and peak filling rate at rest and during exercise at the intensity corresponding to the anaerobic threshold. Groups presented similar exercise capacity evaluated by peak oxygen uptake and at anaerobic threshold. Maximal heart rate was lower in the partial ventriculotomy group compared to the heart failure group (119 ± 20 vs 149 ± 21 bpm; P < 0.05). Ejection fraction at rest was higher in the partial ventriculotomy group as compared to the heart failure group (41 ± 12 vs 32 ± 9%; P < 0.0125); however, ejection fraction increased from rest to anaerobic threshold only in the heart failure group (partial ventriculotomy = 44 ± 17%; P = non-significant vs rest; heart failure = 39 ± 11%; P < 0.0125 vs rest; P < 0.0125 vs change in the partial ventriculotomy group). Peak filling rate was similar at rest and increased similarly in both groups at the anaerobic threshold intensity (partial ventriculotomy = 2.28 ± 0.55 EDV/s; heart failure = 2.52 ± 1.07 EDV/s; P < 0.0125; P > 0.05 vs change in partial ventriculotomy group). The abnormal responses demonstrated here may contribute to the limited exercise capacity of patients with partial left ventriculotomy despite the improvement in resting left ventricular systolic function.