829 resultados para OWL MONKEYS
Resumo:
Aim: To evaluate the effect of a space-maintaining device fixed to the lateral wall of the maxillary sinus after the elevation of the sinus mucosa on bone filling of the sinus cavity. Material and methods: Immediately after the elevation of the maxillary sinus Schneiderian membrane accomplished through lateral antrostomy in four monkeys, a titanium device was affixed to the lateral sinus wall protruding into the sinus cavity to maintain the mucosa elevated without the use of grafting material. The healing of the tissue around the implants was evaluated after 3 and 6 months. Ground sections were prepared and analyzed histologically. Results: The void under the elevated sinus membrane, originally filled with the blood clot, was reduced after 3 as well as after 6 months of healing of about 56% and 40.5%, respectively. In seven out of eight cases, the devices had perforated the sinus mucosa. The formation of mineralized bone and bone marrow amounted to about 42% and 69% after 3 and 6 months, respectively. The connective tissue represented about 53% and 23% of the newly formed tissue after 3 and 6 months, respectively. Conclusions: New bone formation was found below the devices. However, shrinkage of the newly formed tissue was observed both after 3 and 6 months of healing. Hence, the space-maintaining function of the devices used in the present study has to be questioned.
Resumo:
Socioecological models assume that primates adapt their social behavior to ecological conditions, and predict that food availability and distribution, predation risk and risk of infanticide by males affect patterns of social organization, social structure and mating system of primates. However, adaptability and variation of social behavior may be constrained by conservative adaptations and by phylogenetic inertia. The comparative study of closely related species can help to identify the relative contribution of ecological and of genetic determinants to primate social systems. We compared ecological features and social behavior of two species of the genus Sapajus, S. nigritus in Carlos Botelho State Park, an area of Atlantic Forest in Sao Paulo state, and S. libidinosus in Fazenda Boa Vista, a semi-arid habitat in Piaui state, Brazil. S. libidinosus perceived higher predation risk and fed on clumped, high quality, and usurpable resources (fruits) all year round, whereas S. nigritus perceived lower predation risk and relied on evenly distributed, low-quality food sources (leaves) during periods of fruit shortage. As predicted by socioecology models, S. libidinosus females were philopatric and established linear and stable dominance hierarchies, coalitions, and grooming relationships. S. nigritus females competed less often, and could transfer between groups, which might explain the lack of coalitions and grooming bonds among them. Both populations presented similar group size and composition and the same polygynous mating system. The species differed from each other in accordance with differences in the characteristics of their main food sources, as predicted by socioecological models, suggesting that phylogenetic inertia does not constrain social relationships established among female Sapajus. The similarity in mating systems indicates that this element of the social system is not affected by ecological variables and thus, is a more conservative behavioral feature of the genus Sapajus. Am. J. Primatol. 74:315331, 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Abstract Background How are morphological evolution and developmental changes related? This rather old and intriguing question had a substantial boost after the 70s within the framework of heterochrony (changes in rates or timing of development) and nowadays has the potential to make another major leap forward through the combination of approaches: molecular biology, developmental experimentation, comparative systematic studies, geometric morphometrics and quantitative genetics. Here I take an integrated approach combining life-history comparative analyses, classical and geometric morphometrics applied to ontogenetic series to understand changes in size and shape which happen during the evolution of two New World Monkeys (NWM) sister genera. Results Cebus and Saimiri share the same basic allometric patterns in skull traits, a result robust to sexual and ontogenetic variation. If adults of both genera are compared in the same scale (discounting size differences) most differences are small and not statistically significant. These results are consistent using both approaches, classical and geometric Morphometrics. Cebus is a genus characterized by a number of peramorphic traits (adult-like) while Saimiri is a genus with paedomorphic (child like) traits. Yet, the whole clade Cebinae is characterized by a unique combination of very high pre-natal growth rates and relatively slow post-natal growth rates when compared to the rest of the NWM. Morphologically Cebinae can be considered paedomorphic in relation to the other NWM. Geometric morphometrics allows the precise separation of absolute size, shape variation associated with size (allometry), and shape variation non-associated with size. Interestingly, and despite the fact that they were extracted as independent factors (principal components), evolutionary allometry (those differences in allometric shape associated with intergeneric differences) and ontogenetic allometry (differences in allometric shape associated with ontogenetic variation within genus) are correlated within these two genera. Furthermore, morphological differences produced along these two axes are quite similar. Cebus and Saimiri are aligned along the same evolutionary allometry and have parallel ontogenetic allometry trajectories. Conclusion The evolution of these two Platyrrhini monkeys is basically due to a size differentiation (and consequently to shape changes associated with size). Many life-history changes are correlated or may be the causal agents in such evolution, such as delayed on-set of reproduction in Cebus and larger neonates in Saimiri.
Resumo:
Capuchin monkeys are notable among New World monkeys for their widespread use of tools. They use both hammer tools and insertion tools in the wild to acquire food that would be unobtainable otherwise. Evidence indicates that capuchins transport stones to anvil sites and use the most functionally efficient stones to crack nuts. We investigated capuchins’ assessment of functionality by testing their ability to select a tool that was appropriate for two different tool-use tasks: A stone for a hammer task and a stick for an insertion task. To select the appropriate tools, the monkeys investigated a baited tool-use apparatus (insertion or hammer), traveled to a location in their enclosure where they could no longer see the apparatus, made a selection between two tools (stick or stone), and then could transport the tool back to the apparatus to obtain a walnut. Four capuchins were first trained to select and use the appropriate tool for each apparatus. After training, they were then tested by allowing them to view a baited apparatus and then travel to a location 8 m distant where they could select a tool while out of view of the apparatus. All four monkeys chose the correct tool significantly more than expected and transported the tools back to the apparatus. Results confirm capuchins’ propensity for transporting tools, demonstrate their capacity to select the functionally appropriate tool for two different tool-use tasks, and indicate that they can retain the memory of the correct choice during a travel time of several seconds.
Resumo:
Recent research with several species of nonhuman primates suggests sophisticated motor-planning abilities observed in human adults may be ubiquitous among primates. However, there is considerable variability in the extent to which these abilities are expressed across primate species. In the present experiment, we explore whether the variability in the expression of anticipatory motor-planning abilities may be attributed to cognitive differences (such as tool use abilities) or whether they may be due to the consequences of morphological differences (such as being able to deploy a precision grasp). We compared two species of New World monkeys that differ in their tool use abilities and manual dexterity: squirrel monkeys, Saimiri sciureus (less dexterous with little evidence for tool use) and tufted capuchins, Sapajus apella (more dexterous and known tool users). The monkeys were presented with baited cups in an untrained food extraction task. Consistent with the morphological constraint hypothesis, squirrel monkeys frequently showed second-order motor planning by inverting their grasp when picking up an inverted cup, while capuchins frequently deployed canonical upright grasping postures. Findings suggest that the lack of ability for precision grasping may elicit more consistent second-order motor planning, as the squirrel monkeys (and other species that have shown a high rate of second-order planning) have fewer means of compensating for inefficient initial postures. Thus, the interface between morphology and motor planning likely represents an important factor for understanding both the ontogenetic and phylogenetic origins of sophisticated motor-planning abilities.
Resumo:
Self-control is a prerequisite for complex cognitive processes such as cooperation and planning. As such, comparative studies of self-control may help elucidate the evolutionary origin of these capacities. A variety of methods have been developed to test for self-control in non-human primates that include some variation of foregoing an immediate reward in order to gain a more favorable reward. We used a token exchange paradigm to test for self-control in capuchin monkeys (Cebus apella). Animals were trained that particular tokens could be exchanged for food items worth different values. To test for self-control, a monkey was provided with a token that was associated with a lower-value food. When the monkey exchanged the token, the experimenter provided the monkey with a choice between the lower-value food item associated with the token or another token that was associated with a higher-value food. If the monkey chose the token, they could then exchange it for the higher-value food. Of seven monkeys trained to exchange tokens, five demonstrated that they attributed value to the tokens by differentially selecting tokens for higher-value foods over tokens for lower-value foods. When provided with a choice between a food item or a token for a higher-value food, two monkeys selected the token significantly more than expected by chance. The ability of capuchin monkeys to forego an immediate food reward and select a token that could then be traded for a more preferred food demonstrated some degree of self-control. Thus, results suggest a token exchange paradigm could be a successful technique for assessing self-control in this New World species.
Resumo:
Recent research with several species of nonhuman primates suggests sophisticated motor-planning abilities observed in human adults may be ubiquitous among primates. However, there is considerable variability in the extent to which these abilities are expressed across primate species. In the present experiment, we explore whether the variability in the expression of anticipatory motor-planning abilities may be attributed to cognitive differences (such as tool use abilities) or whether they may be due to the consequences of morphological differences (such as being able to deploy a precision grasp). We compared two species of New World monkeys that differ in their tool use abilities and manual dexterity: squirrel monkeys, Saimiri sciureus (less dexterous with little evidence for tool use) and tufted capuchins, Sapajus apella (more dexterous and known tool users). The monkeys were presented with baited cups in an untrained food extraction task. Consistent with the morphological constraint hypothesis, squirrel monkeys frequently showed second-order motor planning by inverting their grasp when picking up an inverted cup, while capuchins frequently deployed canonical upright grasping postures. Findings suggest that the lack of ability for precision grasping may elicit more consistent second-order motor planning, as the squirrel monkeys (and other species that have shown a high rate of second-order planning) have fewer means of compensating for inefficient initial postures. Thus, the interface between morphology and motor planning likely represents an important factor for understanding both the ontogenetic and phylogenetic origins of sophisticated motor-planning abilities. (C) 2013 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Primates as a taxonomic Order have the largest brains corrected for body size in the animal kingdom. These large brains have allowed primates to evolve the capacity to demonstrate advanced cognitive processes across a wide array of abilities. Nonhuman primates are particularly adept at social learning, defined as the modification of behavior by observing the actions of others. Additionally, primates often exploit resources differently depending on their social context. In this study, capuchin monkeys (Cebus apella) were tested on a cognitive task in three social contexts to determine if social context influenced their performance on the task. The three social contexts included: alone, having a dominant individual in an adjacent compartment, and having a subordinate individual in the adjacent compartment. The benefits to this design were thatthe social context was the only variable influencing performance, whereas in previous studies investigating audience effects other animals could physically and directly influence a subject's performance in an open testing situation. Based on past studies, Ipredicted that the presence of a dominant individual would reduce cognitive task performance compared to the other conditions. The cognitive test used was a match-tosample discrimination task in which animals matched combinations of eight geometric shapes. Animals were trained on this task in an isolated context until they reached a baseline level of proficiency and were then tested in the three social contexts in a random order multiple times. Two subjects (Mt and Dv) have successfully completed trials under all conditions. Results indicated that there were no significant difference in taskperformance across the three conditions (Dv x^2 (1) = 0.42, p=0.58; Mt x^2 (1) = 0.02, p=0.88). In all conditions, subjects performed significantly above chance (i.e., 39/60 trials determined by a binomial distribution). Results are contrary to previous studies thatreport low status monkeys 'play dumb' when testing in a mixed social context, possibly because other studies did not account for aggressive interference by dominants while testing. Results of this study suggest that the mere presence of a dominant individualdoes not necessarily affect performance on a cognitive task, but rather the imminence of physical aggression is the most important factor influencing testing in a social context.
Resumo:
The benefits animals derive from living in social groups have produced the evolution of many forms of cooperative behavior. To cooperate, two or more individuals coordinate their actions to accomplish a common goal. One cognitive process that has the potential to influence cooperation is self control. Individuals delaying their impulsive choice for an immediate reward may potentially receive a larger reward later by cooperating with others. In this study, I measured whether brown capuchin monkeys (Cebus apella) were capable of impulse control and whether impulse control was related to cooperation. Impulse control and cooperation were measured using a lazy susan-like apparatus, on which animals could turn a wheel to receive food rewards. The capuchins went through two training phases that taught them how to turn the wheel efficiently to obtain rewards and how to turn the wheel to obtain the larger of two rewards. After training, I tested impulse control by giving the capuchins a choice between a smaller and a larger reward placed at shorter or more distant locations on the wheel. The capuchins demonstrated impulse control in that they tended to inhibit the impulse to select the smaller reward when it was closer and easier to reach and instead selected the larger reward when it was farther away. Cooperation was tested in all possible dyads of seven individuals, a total of 21 dyads, by allowing each dyad 10 trials to work together with effort on the lazy-susan so that each would obtain a reward. Seventeen out of 21 dyads cooperated by simultaneously moving the wheel in the same direction. The correlation between how often a particular dyad cooperated and their average impulse control score was not statistically significant, r(21) = -.125, p = .591. Capuchins demonstrated impulse control and cooperation using this novel apparatus but the two abilities were not related. Other factors such as the unique social relationship between two individuals may play a more prominent role in the motivation to cooperate rather than the cognitive capacity to inhibit behavior.
Resumo:
Squirrel monkeys (Saimiri sciureus) were infected experimentally with the agent of classical bovine spongiform encephalopathy (BSE). Two to four years later, six of the monkeys developed alterations in interactive behaviour and cognition and other neurological signs typical of transmissible spongiform encephalopathy (TSE). At necropsy examination, the brains from all of the monkeys showed pathological changes similar to those described in variant Creutzfeldt-Jakob disease (vCJD) of man, except that the squirrel monkey brains contained no PrP-amyloid plaques typical of that disease. Constant neuropathological features included spongiform degeneration, gliosis, deposition of abnormal prion protein (PrP(TSE)) and many deposits of abnormally phosphorylated tau protein (p-Tau) in several areas of the cerebrum and cerebellum. Western blots showed large amounts of proteinase K-resistant prion protein in the central nervous system. The striking absence of PrP plaques (prominent in brains of cynomolgus macaques [Macaca fascicularis] with experimentally-induced BSE and vCJD and in human patients with vCJD) reinforces the conclusion that the host plays a major role in determining the neuropathology of TSEs. Results of this study suggest that p-Tau, found in the brains of all BSE-infected monkeys, might play a role in the pathogenesis of TSEs. Whether p-Tau contributes to development of disease or appears as a secondary change late in the course of illness remains to be determined.
The contexts of scratching behavior and postconflict behavior in squirrel monkeys (Saimiri sciureus)
Resumo:
Self-directed behavior (SDB), such as scratching, is a reliable indicator of emotional arousal in non-human primates. In contrast, affiliative behavior, such as social grooming, has been shown to have a calming effect in primates and reduce arousal. In order to test whether the expression of SDB was related to arousal, the scratching behavior of eight captive squirrel monkeys (Saimiri sciureus) was compared across four social contexts (huddling, proximity to others, solitary and post-conflict). In addition,rates of scratching were examined before and after affiliative behavior during the postconflict context. I tested for this effect by using the post-conflict/matched control(PC/MC) method in which post-conflict (PC) behavior of an animal is compared to thebehavior of the same animal in a baseline, nonaggressive situation or a matched control(MC). Context and associated scratching data were obtained from a total of 98 hours of focal sample data. Scratching was significantly lower while animals were huddling thanthe other two contexts. Scratching rates while solitary were significantly higher than those occurring while animals were in proximity. Scratching was also higher in PC than MC. Following conflict, animals were significantly more likely to make contact withthird parties not involved in aggression. Most of these (79%) were a third party approaching a combatant. Further, scratching rates decreased following post-conflict third party contacts and the decrease was not due to a general decrease in scratching thatmight have been occurring after the aggressive interaction. Huddling behavior appears to reduce arousal in squirrel monkeys and may act as a tension-reduction mechanism. The elevated scratching in the solitary context may suggest that squirrel monkeys may be engaged in activities while solitary, such as vigilant behavior that may increase arousal. The third party post conflict affiliative contacts observed were the first such interactions observed in squirrel monkeys. The fact that these third contacts reduced scratching ratesin the combatants indicates that 'consolation' may have been demonstrated in this species. The overall pattern of results suggested that scratching was reliable behavioral indicator of anxiety in squirrel monkeys. These results indicate that overt behavior can be used to assess emotional states in this and other species, acting as a mediator to understanding how emotions regulate social behavior.
Resumo:
Capuchin monkeys, Cebus sp., utilize a wide array of gestural displays in the wild, including facial displays such as lip-smacking and bare-teeth displays. In captivity, they have been shown to respond to the head orientation of humans, show sensitivity to human attentional states, as well as follow human gazes behind barriers. In this study, I investigated whether tufted capuchin monkeys (Cebus apella) would attend to and utilize the gestural cues of a conspecific to obtain a hidden reward. Two capuchins faced each other in separate compartments of an apparatus with an open field in between. The open field contained two cups with holes on one side such that only one monkey, a so-called cuing monkey, could see the reward inside one of the cups. I then moved the cups toward the other signal-receiving monkey and assessed whether it would utilize untrained cues provided by the cuing monkey to select the cup containing the reward. Two of four female capuchin monkeys learned to select the cup containing the reward significantly more often than chance. Neither of these two monkeys performed over chance spontaneously, however, and the other two monkeys never performed above chance despite many blocks of trials. Successful choices by two monkeys to obtain hidden rewards provided experimental evidence that capuchin monkeys attend to and utilize the gestural cues of conspecifics.
Resumo:
Multiple recent studies provide evidence that both human and nonhuman primates possess motor planning abilities. I tested for the demonstration of motor planning in two previously untested primate species through two experiments. In the first experiment, I compared the extent to which squirrel monkeys (Saimiri sciureus) and brown capuchins (Cebus apella) plan their movements in a grasping task. Individuals were presented with an inverted cup that required being turned and held upright in order to extract a food reward from the inside of the cup. This task was most efficiently solved by using an initially awkward inverted grasp that affords a comfortable hand and arm orientation at the end of the movement (known as end-state comfort). While certain individuals from both species exhibited end-state comfort, many of the capuchins never demonstrated this type of motor planning. Furthermore, the squirrel monkeys used the efficient grasp significantly more than the capuchins. In the second experiment, I presented the capuchins with another grasping task to test if they would express motor planning abilities in a different context. Here, the capuchins were offered a dowel that was baited on either the left or right end. A radial grasp with the thumb pointing towards the baited end was considered to be the most efficient grasp because it afforded a comfortable final position. The capuchins switched hands and used an overhand radial grasp on the dowel significantly more often than not, thus demonstrating motor planning in this task. The grasps typically utilized by these two closely related species differ considerably in that capuchins are capable of exercising precision grips, whereas squirrel monkeys are limited to whole-handed power grips. Moreover, unlike capuchins, squirrel monkeys are not particularly dexterous nor are they capable of precise manipulative actions. It is therefore more beneficial for squirrel monkeys to plan their movements efficiently because they are less capable of compensating for inappropriate initial grasps. Due to the appreciable variability in the expression of motor planning skills across species, I proposed that morphological constraints might explain the observed discrepancies in movement planning among different primate species.