852 resultados para OSTEOPOROTIC HIP FRACTURES
Resumo:
The use of polymethylmethacrylate (PMMA) cement to reinforce fragile or broken vertebral bodies (vertebroplasty) leads to extensive bone stiffening. Fractures in the adjacent vertebrae may be the consequence of this procedure. PMMA with a reduced Young's modulus may be more suitable. The goal of this study was to produce and characterize stiffness adapted PMMA bone cements. Porous PMMA bone cements were produced by combining PMMA with various volume fractions of an aqueous sodium hyaluronate solution. Porosity, Young's modulus, yield strength, polymerization temperature, setting time, viscosity, injectability, and monomer release of those porous cements were investigated. Samples presented pores with diameters in the range of 25-260 microm and porosity up to 56%. Young's modulus and yield strength decreased from 930 to 50 MPa and from 39 to 1.3 MPa between 0 and 56% porosity, respectively. The polymerization temperature decreased from 68 degrees C (0%, regular cement) to 41 degrees C for cement having 30% aqueous fraction. Setting time decreased from 1020 s (0%, regular cement) to 720 s for the 30% composition. Viscosity of the 30% composition (145 Pa s) was higher than the ones received from regular cement and the 45% composition (100-125 Pa s). The monomer release was in the range of 4-10 mg/mL for all porosities; showing no higher release for the porous materials. The generation of pores using an aqueous gel seems to be a promising method to make the PMMA cement more compliant and lower its mechanical properties to values close to those of cancellous bone.
Resumo:
In a randomly selected cohort of Swiss community-dwelling elderly women prospectively followed up for 2.8 +/- 0.6 years, clinical fractures were assessed twice yearly. Bone mineral density (BMD) measured at tibial diaphysis (T-DIA) and tibial epiphysis (T-EPI) using dual-energy X-ray absorptiometry (DXA) was shown to be a valid alternative to lumbar spine or hip BMD in predicting fractures.
Resumo:
Dual energy X-ray absorptiometry (DXA) is widely accepted as the reference method for diagnosis and monitoring of osteoporosis and for assessment of fracture risk, especially at hip. However, axial-DXA is not suitable for mass screening, because it is usually confined to specialized centers. We propose a two-step diagnostic approach to postmenopausal osteoporosis: the first step, using an inexpensive, widely available screening technique, aims at risk stratification in postmenopausal women; the second step, DXA of spine and hip is applied only to potentially osteoporotic women preselected on the basis of the screening measurement. In a group of 110 healthy postmenopausal woman, the capability of various peripheral bone measurement techniques to predict osteoporosis at spine and/or hip (T-score < -2.5SD using DXA) was tested using receiver operating characteristic (ROC) curves: radiographic absorptiometry of phalanges (RA), ultrasonometry at calcaneus (QUS. CALC), tibia (SOS.TIB), and phalanges (SOS.PHAL). Thirty-three women had osteoporosis at spine and/or hip with DXA. Areas under the ROC curves were 0.84 for RA, 0.83 for QUS.CALC, 0.77 for SOS.PHAL (p < 0.04 vs RA) and 0.74 for SOS.TIB (p < 0.02 vs RA and p = 0.05 vs QUS.CALC). For levels of sensitivity of 90%, the respective specificities were 67% (RA), 64% (QUS.CALC), 48% (SOS.PHAL), and 39% (SOS.TIB). In a cost-effective two-step, the price of the first step should not exceed 54% (RA), 51% (QUS.CALC), 42% (SOS.PHAL), and 25% (SOS.TIB). In conclusion, RA, QUS.CALC, SOS.PHAL, and SOS.TIB may be useful to preselect postmenopausal women in whom axial DXA is indicated to confirm/exclude osteoporosis at spine or hip.
Resumo:
BACKGROUND CONTEXT: Closed reduction and internal fixation by an anterior approach is an established option for operative treatment of displaced Type II odontoid fractures. In elderly patients, however, inadequate screw purchase in osteoporotic bone can result in severe procedure-related complications. PURPOSE: To improve the stability of odontoid fracture screw fixation in the elderly using a new technique that includes injection of polymethylmethacrylat (PMMA) cement into the C2 body. STUDY DESIGN: Retrospective review of hospital and outpatient records as well as radiographs of elderly patients treated in a university hospital department of orthopedic surgery. PATIENT SAMPLE: Twenty-four elderly patients (8 males and 16 females; mean age, 81 years; range, 62-98 years) with Type II fractures of the dens. OUTCOME MEASURES: Complications, cement leakage (symptomatic/asymptomatic), operation time, loss of reduction, pseudarthrosis and revision surgery, patient complaints, return to normal activities, and signs of neurologic complications were all documented. METHODS: After closed reduction and anterior approach to the inferior border of C2, a guide wire is advanced to the tip of the odontoid under biplanar fluoroscopic control. Before the insertion of one cannulated, self-drilling, short thread screws, a 12 gauge Yamshidi cannula is inserted from anterior and 1 to 3 mL of high-viscosity PMMA cement is injected into the anteroinferior portion of the C2 body. During polymerization of the cement, the screws are further inserted using a lag-screw compression technique. The cervical spine then is immobilized with a soft collar for 8 weeks postoperatively. RESULTS: Anatomical reduction of the dens was achieved in all 24 patients. Mean operative time was 64 minutes (40-90 minutes). Early loss of reduction occurred in three patients, but revision surgery was indicated in only one patient 2 days after primary surgery. One patient died within the first eight postoperative weeks, one within 3 months after surgery. In five patients, asymptomatic cement leakage was observed (into the C1-C2 joint in three patients, into the fracture in two). Conventional radiologic follow-up at 2 and 6 months confirmed anatomical healing in 16 of the19 patients with complete follow-up. In two patients, the fractures healed in slight dorsal angulation; one patient developed a asymptomatic pseudarthrosis. All patients were able to resume their pretrauma level of activity. CONCLUSIONS: Cement augmentation of the screw in Type II odontoid fractures in elderly patients is technically feasible in a clinical setting with a low complication rate. This technique may improve screw purchase, especially in the osteoporotic C2 body.
Resumo:
INTRODUCTION Data concerning outcome after management of acetabular fractures by anterior approaches with focus on age and fractures associated with roof impaction, central dislocation and/or quadrilateral plate displacement are rare. METHODS Between October 2005 and April 2009 a series of 59 patients (mean age 57 years, range 13-91) with fractures involving the anterior column was treated using the modified Stoppa approach alone or for reduction of displaced iliac wing or low anterior column fractures in combination with the 1st window of the ilioinguinal approach or the modified Smith-Petersen approach, respectively. Surgical data, accuracy of reduction, clinical and radiographic outcome at mid-term and the need for endoprosthetic replacement in the postoperative course (defined as failure) were assessed; uni- and multivariate regression analysis were performed to identify independent predictive factors (e.g. age, nonanatomical reduction, acetabular roof impaction, central dislocation, quadrilateral plate displacement) for a failure. Outcome was assessed for all patients in general and in accordance to age in particular; patients were subdivided into two groups according to their age (group "<60yrs", group "≥60yrs"). RESULTS Forty-three of 59 patients (mean age 54yrs, 13-89) were available for evaluation. Of these, anatomic reduction was achieved in 72% of cases. Nonanatomical reduction was identified as being the only multivariate predictor for subsequent total hip replacement (Adjusted Hazard Ratio 23.5; p<0.01). A statistically significant higher rate of nonanatomical reduction was observed in the presence of acetabular roof impaction (p=0.01). In 16% of all patients, total hip replacement was performed and in 69% of patients with preserved hips the clinical results were excellent or good at a mean follow up of 35±10 months (range: 24-55). No statistical significant differences were observed between both groups. CONCLUSION Nonanatomical reconstruction of the articular surfaces is at risk for failure of joint-preserving management of acetabular fractures through an isolated or combined modified Stoppa approach resulting in total joint replacement at mid-term. In the elderly, joint-preserving surgery is worth considering as promising clinical and radiographic results might be obtained at mid-term.
Resumo:
BACKGROUND In postmenopausal women, yearly intravenous zoledronate (ZOL) compared to placebo (PLB) significantly increased bone mineral density (BMD) at lumbar spine (LS), femoral neck (FN), and total hip (TH) and decreased fracture risk. The effects of ZOL on BMD at the tibial epiphysis (T-EPI) and diaphysis (T-DIA) are unknown. METHODS A randomized controlled ancillary study of the HORIZON trial was conducted at the Department of Osteoporosis of the University Hospital of Berne, Switzerland. Women with ≥1 follow-up DXA measurement who had received ≥1 dose of either ZOL (n=55) or PLB (n=55) were included. BMD was measured at LS, FN, TH, T-EPI, and T-DIA at baseline, 6, 12, 24, and 36 months. Morphometric vertebral fractures were assessed. Incident clinical fractures were recorded as adverse events. RESULTS Baseline characteristics were comparable with those in HORIZON and between groups. After 36 months, BMD was significantly higher in women treated with ZOL vs. PLB at LS, FN, TH, and T-EPI (+7.6%, +3.7%, +5.6%, and +5.5%, respectively, p<0.01 for all) but not T-DIA (+1.1%). The number of patients with ≥1 incident non-vertebral or morphometric fracture did not differ between groups (9 ZOL/11 PLB). Mean changes in BMD did not differ between groups with and without incident fracture, except that women with an incident non-vertebral fracture had significantly higher bone loss at predominantly cortical T-DIA (p=0.005). CONCLUSION ZOL was significantly superior to PLB at T-EPI but not at T-DIA. Women with an incident non-vertebral fracture experienced bone loss at T-DIA.
Resumo:
Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone's material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of thirteen femora predicted the strength (R2=0.84, SEE=540 N, 16.2%), stiffness (R2=0.82, SEE=233 N/mm, 18.0%) and fracture energy (R2=0.72, SEE=3.85 J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation.
Resumo:
PURPOSE To determine the predictive value of the vertebral trabecular bone score (TBS) alone or in addition to bone mineral density (BMD) with regard to fracture risk. METHODS Retrospective analysis of the relative contribution of BMD [measured at the femoral neck (FN), total hip (TH), and lumbar spine (LS)] and TBS with regard to the risk of incident clinical fractures in a representative cohort of elderly post-menopausal women previously participating in the Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk study. RESULTS Complete datasets were available for 556 of 701 women (79 %). Mean age 76.1 years, LS BMD 0.863 g/cm(2), and TBS 1.195. LS BMD and LS TBS were moderately correlated (r (2) = 0.25). After a mean of 2.7 ± 0.8 years of follow-up, the incidence of fragility fractures was 9.4 %. Age- and BMI-adjusted hazard ratios per standard deviation decrease (95 % confidence intervals) were 1.58 (1.16-2.16), 1.77 (1.31-2.39), and 1.59 (1.21-2.09) for LS, FN, and TH BMD, respectively, and 2.01 (1.54-2.63) for TBS. Whereas 58 and 60 % of fragility fractures occurred in women with BMD T score ≤-2.5 and a TBS <1.150, respectively, combining these two thresholds identified 77 % of all women with an osteoporotic fracture. CONCLUSIONS Lumbar spine TBS alone or in combination with BMD predicted incident clinical fracture risk in a representative population-based sample of elderly post-menopausal women.
Resumo:
Limited data exist on the efficacy of long-term therapies for osteoporosis. In osteoporotic postmenopausal women receiving denosumab for 7 years, nonvertebral fracture rates significantly decreased in years 4-7 versus years 1-3. This is the first demonstration of a further benefit on fracture outcomes with long-term therapy for osteoporosis. INTRODUCTION This study aimed to evaluate whether denosumab treatment continued beyond 3 years is associated with a further reduction in nonvertebral fracture rates. METHODS Participants who completed the 3-year placebo-controlled Fracture REduction Evaluation of Denosumab in Osteoporosis every 6 Months (FREEDOM) study were invited to participate in an open-label extension. The present analysis includes 4,074 postmenopausal women with osteoporosis (n = 2,343 long-term; n = 1,731 cross-over) who enrolled in the extension, missed ≤1 dose during their first 3 years of denosumab treatment, and continued into the fourth year of treatment. Comparison of nonvertebral fracture rates during years 1-3 of denosumab with that of the fourth year and with the rate during years 4-7 was evaluated. RESULTS For the combined group, the nonvertebral fracture rate per 100 participant-years was 2.15 for the first 3 years of denosumab treatment (referent) and 1.36 in the fourth year (rate ratio [RR] = 0.64; 95 % confidence interval (CI) = 0.48 to 0.85, p = 0.003). Comparable findings were observed in the groups separately and when nonvertebral fracture rates during years 1-3 were compared to years 4-7 in the long-term group (RR = 0.79; 95 % CI = 0.62 to 1.00, p = 0.046). Fracture rate reductions in year 4 were most prominent in subjects with persisting low hip bone mineral density (BMD). CONCLUSIONS Denosumab treatment beyond 3 years was associated with a further reduction in nonvertebral fracture rate that persisted through 7 years of continuous denosumab administration. The degree to which denosumab further reduces nonvertebral fracture risk appears influenced by the hip bone density achieved with initial therapy.
Resumo:
Trabecular bone score (TBS) is a grey-level textural index of bone microarchitecture derived from lumbar spine dual-energy X-ray absorptiometry (DXA) images. TBS is a BMD-independent predictor of fracture risk. The objective of this meta-analysis was to determine whether TBS predicted fracture risk independently of FRAX probability and to examine their combined performance by adjusting the FRAX probability for TBS. We utilized individual level data from 17,809 men and women in 14 prospective population-based cohorts. Baseline evaluation included TBS and the FRAX risk variables and outcomes during follow up (mean 6.7 years) comprised major osteoporotic fractures. The association between TBS, FRAX probabilities and the risk of fracture was examined using an extension of the Poisson regression model in each cohort and for each sex and expressed as the gradient of risk (GR; hazard ratio per 1SD change in risk variable in direction of increased risk). FRAX probabilities were adjusted for TBS using an adjustment factor derived from an independent cohort (the Manitoba Bone Density Cohort). Overall, the GR of TBS for major osteoporotic fracture was 1.44 (95% CI: 1.35-1.53) when adjusted for age and time since baseline and was similar in men and women (p > 0.10). When additionally adjusted for FRAX 10-year probability of major osteoporotic fracture, TBS remained a significant, independent predictor for fracture (GR 1.32, 95%CI: 1.24-1.41). The adjustment of FRAX probability for TBS resulted in a small increase in the GR (1.76, 95%CI: 1.65, 1.87 vs. 1.70, 95%CI: 1.60-1.81). A smaller change in GR for hip fracture was observed (FRAX hip fracture probability GR 2.25 vs. 2.22). TBS is a significant predictor of fracture risk independently of FRAX. The findings support the use of TBS as a potential adjustment for FRAX probability, though the impact of the adjustment remains to be determined in the context of clinical assessment guidelines. This article is protected by copyright. All rights reserved.
Resumo:
OBJECTIVE Vertebroplasty and balloon kyphoplasty are effective treatment options for osteoporotic vertebral compression fractures but are limited in correction of kyphotic deformity. Lordoplasty has been reported as an alternative, cost-effective, minimally invasive, percutaneous cement augmentation technique with good restoration of vertebral body height and alignment. The authors report on its clinical and radiological midterm results. METHODS A retrospective review was conducted of patients treated with lordoplasty from 2002 to 2014. Inclusion criteria were clinical and radiological follow-up evaluations longer than 24 months. Radiographs were accessed regarding initial correction and progressive loss of reduction. Complications and reoperations were recorded. Actual pain level, pain relief immediately after surgery, autonomy, and subjective impression of improvement of posture were assessed by questionnaire. RESULTS Sixty-five patients (46 women, 19 men, age range 38.9-86.2 years old) were treated with lordoplasty for 69 vertebral compression and insufficiency fractures. A significant correction of the vertebral kyphotic angle (mean 13°) and segmental kyphotic angle (mean 11°) over a mean follow-up of 33 months (range 24-108 months) was achieved (p < 0.001). On average, pain was relieved to 90% of the initial pain level. In 24% of the 65 patients a second spinal intervention was necessary: 16 distant (24.6%) and 7 adjacent (10.8%) new osteoporotic fractures, 4 instrumented stabilizations (6.2%), 1 new adjacent traumatic fracture (1.5%), and 1 distant microsurgical decompression (1.5%). Cement leakage occurred in 10.4% but was only symptomatic in 1 case. CONCLUSIONS Lordoplasty appeared safe and effective in midterm pain alleviation and restoration of kyphotic deformity in osteoporotic compression and insufficiency fractures. The outcomes of lordoplasty are consistent with other augmentation techniques.
Resumo:
Fractures of the pelvic ring are comparatively rare with an incidence of 2-8 % of all fractures depending on the study in question. The severity of pelvic ring fractures can be very different ranging from simple and mostly "harmless" type A fractures up to life-threatening complex type C fractures. Although it was previously postulated that high-energy trauma was necessary to induce a pelvic ring fracture, over the past decades it became more and more evident, not least from data in the pelvic trauma registry of the German Society for Trauma Surgery (DGU), that low-energy minor trauma can also cause pelvic ring fractures of osteoporotic bone and in a rapidly increasing population of geriatric patients insufficiency fractures of the pelvic ring are nowadays observed with no preceding trauma.Even in large trauma centers the number of patients with pelvic ring fractures is mostly insufficient to perform valid and sufficiently powerful monocentric studies on epidemiological, diagnostic or therapeutic issues. For this reason, in 1991 the first and still the only registry worldwide for the documentation and evaluation of pelvic ring fractures was introduced by the Working Group Pelvis (AG Becken) of the DGU. Originally, the main objectives of the documentation were epidemiological and diagnostic issues; however, in the course of time it developed into an increasingly expanding dataset with comprehensive parameters on injury patterns, operative and conservative therapy regimens and short-term and long-term outcome of patients. Originally starting with 10 institutions, in the meantime more than 30 hospitals in Germany and other European countries participate in the documentation of data. In the third phase of the registry alone, which was started in 2004, data from approximately 15,000 patients with pelvic ring and acetabular fractures were documented. In addition to the scientific impact of the pelvic trauma registry, which is reflected in the numerous national and international publications, the dramatically changing epidemiology of pelvic ring fractures, further developments in diagnostics and the changes in operative procedures over time could be demonstrated. Last but not least the now well-established diagnostic and therapeutic algorithms for pelvic ring fractures, which could be derived from the information collated in registry studies, reflect the clinical impact of the registry.
Resumo:
Medial penetration of the helical blade into the hip joint after fixation of trochanteric fractures using the proximal femur nail antirotation (PFN-A) is a potential failure mode. In low demand patients a blade exchange with cement augmentation may be an option if conversion to total hip arthroplasty is unfeasible to salvage the cut-through. This article describes a technique to avoid intraarticular cement leakage using a cement plug to close the defect in the femoral head caused by the cut-through.
Resumo:
Background. The impact of human genetic background on low-trauma fracture (LTF) risk has not been evaluated in the context of human immunodeficiency virus (HIV) and clinical LTF risk factors. Methods. In the general population, 6 common single-nucleotide polymorphisms (SNPs) associate with LTF through genome-wide association study. Using genome-wide SNP arrays and imputation, we genotyped these SNPs in HIV-positive, white Swiss HIV Cohort Study participants. We included 103 individuals with a first, physician-validated LTF and 206 controls matched on gender, whose duration of observation and whose antiretroviral therapy start dates were similar using incidence density sampling. Analyses of nongenetic LTF risk factors were based on 158 cases and 788 controls. Results. A genetic risk score built from the 6 LTF-associated SNPs did not associate with LTF risk, in both models including and not including parental hip fracture history. The contribution of clinical LTF risk factors was limited in our dataset. Conclusions. Genetic LTF markers with a modest effect size in the general population do not improve fracture prediction in persons with HIV, in whom clinical LTF risk factors are prevalent in both cases and controls.
Resumo:
Thesis (Master's)--University of Washington, 2016-06