960 resultados para ORGANIC OXYGEN COMPOUNDS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

29 parent- and alkyl-polycyclic aromatic hydrocarbons (PAHs), 15 oxygenated-PAHs (OPAHs), 11 nitrated-PAHs (NPAHs) and 4 azaarenes (AZAs) in both the gaseous and particulate phases, as well as the particulate-bound carbon fractions (organic carbon, elemental carbon, char, and soot) in ambient air sampled in March and September 2012 from an urban site in Xi'an, central China were extracted and analyzed. The average concentrations (gaseous+particulate) of 29PAHs, 15OPAHs, 11NPAHs and 4AZAs were 1267.0±307.5, 113.8±46.1, 11.8±4.8 and 26.5±11.8ngm(-3) in March and 784.7±165.1, 67.2±9.8, 9.0±1.5 and 21.6±5.1ngm(-3) in September, respectively. Concentrations of 29PAHs, 15OPAHs and 11NPAHs in particulates were significantly correlated with those of the carbon fractions (OC, EC, char and soot). Both absorption into organic matter in particles and adsorption onto the surface of particles were important for PAHs and OPAHs in both sampling periods, with more absorption occurring in September, while absorption was always the most important process for NPAHs. The total carcinogenic risk of PAHs plus the NPAHs was higher in March. Gaseous compounds, which were not considered in most previous studies, contributed 29 to 44% of the total health risk in March and September, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aerosol samples were collected in Zurich, Switzerland, at an urban background site and were analyzed with size exclusion chromatography (SEC) and laser/desorption ionization mass spectrometry (LDI-MS) for water-soluble organic compounds with high molecular weight. Daily samples were collected during two campaigns in winter and summer, for 1 month each. The concentration of high-molecular-weight compounds (humic-like substances (HULIS)) was between 0.4 and 4 μg/m3 in winter and summer. The most intense signals in the LDI-MS mass spectra were measured between m/z150 and 500, comparing well with the mode of the two main high mass peaks determined with SEC corresponding to masses between 200 and 600 Da. For the maximum molecular weight, however, different results were obtained by the two techniques: whereas a maximum molecular weight between 1300 and 3300 Da was found with SEC, hardly any peaks above m/z700 were measured with LDI-MS. During summer the maximum molecular weight of HULIS (determined with SEC) correlates positively with several parameters such as ozone and increased temperature indicative of enhanced atmospheric photo-oxidation. The HULIS concentration also correlates positively with the oxalic acid concentration in the particles. This suggests that HULIS are generated by secondary processes in summer. The lack of such correlations during winter suggests that other sources and processes might be important during colder seasons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Arsenic trioxide (ATO) is an inorganic arsenic derivative that is very effective against relapsed acute promyelocytic leukemia. It is being investigated as therapy for other cancers, but the risk/benefit ratio is questionable due to significant side effects. In contrast, organic arsenic derivatives (OAD) are known to be much less toxic than ATO. Based on high activity, we selected GMZ27 (dipropil-s-glycerol arsenic) for further study and have confirmed its potent activity against human acute leukemia cell lines. This anti-leukemic activity is significantly higher than that of ATO. Both in vivo and in vitro tests have shown that GMZ27 is significantly less toxic to normal bone marrow mononuclear cells and normal mice. Therefore, further study of the biological activity of GMZ27 was undertaken. ^ GMZ27, in contrast to ATO, can only marginally induce maturation of leukemic cells. GMZ27 has no effect on cell cycle. The anti-leukemic activity of GMZ27 against acute myeolocytic leukemia cells is not dependent upon degradation of PML-RARα fusion protein. GMZ27 causes dissipation of mitochondrial transmembrane potential, cleavage of caspase 9, caspase 3 activation. Further studies indicated that GMZ27 induces intracellular reactive oxygen species (ROS) production, and modification of intracellular ROS levels had profound effect on its potential to inhibit proliferation of leukemic cells. Therefore ROS production plays a major role in the anti-leukemic activity of GMZ27. ^ To identify how GMZ27 induces ROS, our studies focused on mitochondria and NADPH oxidase. The results indicated that the source of ROS generation induced by GMZ27 is dose dependent. At the low dose (0.3 uM) GMZ27 induces NADPH oxidase activity that leads to late ROS production, while at the high dose (2.0 uM) mitochondria function is disrupted and early ROS production is induced leading to dramatic cell apoptosis. Therefore, late, ROS production can be detected in mitochondria are depleted Rho-0 cells. Our work not only delineates a major biologic pathway for the anti-leukemic activity of GMZ27, but also discusses possible ways of enhancing the effect by the co-application of NADPH oxidase activator. Further study of this interaction may lead to achieving better therapeutic index.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Occupational exposures to organic solvents, specifically acetonitrile and methanol, have the potential to cause serious long-term health effects. In the laboratory, these solvents are used extensively in protocols involving the use of high performance liquid chromatography (HPLC). Operators of HPLC equipment may be potentially exposed to these organic solvents when local exhaust ventilation is not employed properly or is not available, which can be the case in many settings. The objective of this research was to characterize the various sites of vapor release in the HPLC process and then to determine the relative influence of a novel vapor recovery system on the overall exposure to laboratory personnel. The effectiveness of steps to reduce environmental solvent vapor concentrations was assessed by measuring exposure levels of acetonitrile and methanol before and after installation of the vapor recovery system. With respect to acetonitrile, the concentration was not statistically significant with p=0.938; moreover, exposure after the intervention was actually higher than prior to intervention. With respect to methanol, the concentration was not statistically significant with p=0.278. This indicates that the exposure to methanol after the intervention was not statistically significantly higher or lower than prior to intervention. Thus, installation of the vapor recovery device did not result in statistically significant reduction in exposures in the settings encountered, and acetonitrile actually increased significantly.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To assess the indoor environment of two different types of dental practices regarding VOCs, PM2.5, and ultrafine particulate concentrations and examine the relationship between specific dental activities and contaminant levels. Method: The indoor environments of two selected dental settings (private practice and community health center) will were assessed in regards to VOCs, PM 2.5, and ultrafine particulate concentrations, as well as other indoor air quality parameters (CO2, CO, temperature, and relative humidity). The sampling duration was four working days for each dental practice. Continuous monitoring and integrated sampling methods were used and number of occupants, frequency, type, and duration of dental procedures or activities recorded. Measurements were compared to indoor air quality standards and guidelines. Results: The private practice had higher CO2, CO, and most VOC concentrations than the community health center, but the community health center had higher PM2.5 and ultrafine PM concentrations. Concentrations of p-dichlorobenzene and PM2.5 exceeded some guidelines. Outdoor concentrations greatly influenced the indoor concentration. There were no significant differences in contaminant levels between the operatory and general area. Indoor concentrations during the working period were not always consistently higher than during the nonworking period. Peaks in particulate matter concentration occurred during root canal and composite procedures.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To study the consumption of dissolved organic matter (DOM) by bacteria living in untra-oligotrophic artificial or natural seawater, we analyzed the composition of DOM before (timepoint t0, directly after inoculation) and after (timepoint t2, 3 weeks of incubation) growth of the bacteria using Fourier transform ion cyclotron mass spectrometry (ESI FT-ICR-MS). The oligotrophic natural seawater used originates from the South Pacific Gyre. Our data show that the bacteria were able to utilize a variety of different organic compounds. These compounds belong to different chemical compound groups and likely fuel the bacterial energy, carbon and nitrogen requirements under the ultra-oligotrophic conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ocean drilling has revealed the existence of vast microbial populations in the deep subseafloor, but to date little is known about their metabolic activities. To better understand the biogeochemical processes in the deep biosphere, we investigate the stable carbon isotope chemistry of acetate and other carbon-bearing metabolites in sediment pore-waters. Acetate is a key metabolite in the cycling of carbon in anoxic sediments. Its stable carbon isotopic composition provides information on the metabolic processes dominating acetate turnover in situ. This study reports our findings for a methane-rich site at the northern Cascadia Margin (NE Pacific) where Expedition 311 of the Integrated Ocean Drilling Program (IODP) sampled the upper 190 m of sediment. At Site U1329, d13C values of acetate span a wide range from -46.0 per mill to -11.0 per mill vs. VPDB and change systematically with sediment depth. In contrast, d13C values of both the bulk dissolved organic carbon (DOC) (-21.6 ± 1.3 per mill vs. VPDB) and the low-molecular-weight compound lactate (-20.9 ± 1.8 per mill vs. VPDB) show little variability. These species are interpreted to represent the carbon isotopic composition of fermentation products. Relative to DOC, acetate is up to 23.1 per mill depleted and up to 9.1 per mill enriched in 13C. Broadly, 13C-depletions of acetate relative to DOC indicate flux of carbon from acetogenesis into the acetate pool while 13C-enrichments of pore-water acetate relative to DOC suggest consumption of acetate by acetoclastic methanogenesis. Isotopic relationships between acetate and lactate or DOC provide new information on the carbon flow and the presence and activity of specific functional microbial communities in distinct biogeochemical horizons of the sediment. In particular, they suggest that acetogenic CO2-reduction can coexist with methanogenic CO2-reduction, a notion contrary to the hypothesis that hydrogen levels are controlled by the thermodynamically most favorable electron-accepting process. Further, the isotopic relationship suggests a relative increase in acetate flow to acetoclastic methanogenesis with depth although its contribution to total methanogenesis is probably small. Our study demonstrates how the stable carbon isotope biogeochemistry of acetate can be used to identify pathways of microbial carbon turnover in subsurface environments. Our observations also raise new questions regarding the factors controlling acetate turnover in marine sediments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Total organic carbon, amino compounds, and carbohydrates were measured in pore waters and sediments of Pliocene to Pleistocene age from Sites 723 and 724 (ODP Leg 117) to evaluate (1) relationships between organic matter in the sediment and in the pore water, (2) the imprint of lithological variations on the abundance and contribution of organic substances, (3) degradation of amino compounds and carbohydrates with time and/or depth, and (4) the dependence of the ammonia concentration in the pore water on the degradation of amino compounds in the sediment. Total organic carbon concentrations (TOC) of the investigated sediment samples range from 0.9% to 8.7%, and total nitrogen concentrations (TN) from 0.1% to 0.5%. Up to 4.9% of the TOC is contributed by hydrolyzable amino acids (THAA) which are present in amounts between 1.1 and 21.3 µmol/g dry sediment and decrease strongly downhole. Hydrolyzable carbohydrates (THCHO) were found in concentrations from 1.3 to 6.6 ?mol/g sediment constituting between 0.1% and 2.0% of the TOC. Differences between the distribution patterns of monomers in Sites 723 and 724 indicate higher terrigenous influence for Site 724 and, furthermore, enhanced input of organic matter that is relatively resistant to microbial degradation. Lithologically distinct facies close to the Pliocene/Pleistocene boundary yield different organic matter compositions. Laminated horizons seem to correspond with enhanced amounts of biogenic siliceous material and minor microbiological degradation. Total amounts of dissolved organic carbon (DOC) in pore waters vary between 11 and 131 mg/L. Concentrations of DOC as well as of dissolved amino compounds and carbohydrates appear to be related to microbial activity and/or associated redox zones and not so much to the abundance of organic matter in the sediments. Distributions of amino acids and monosaccharides in pore waters show a general enrichment in relatively stable components in comparison to those of the sediments. Nevertheless, the same trend appears between amino acids present in the sediments from Sites 723 and 724 as well as between amino acids in pore waters from these two sites, indicating a direct relation between the dissolved and the sedimentary organic fractions. Different ammonia concentrations in the pore waters of Sites 723 and 724 seem to be related to enhanced release of ammonia from degradation of amino compounds in Site 723.