872 resultados para Nutritional geometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This survey was carried out to provide the Kainji Lake Fisheries Promotion Project (KLFPP), whose overall goal is the improvement of the standard of living of fishing communities around Kainji Lake, Nigeria, managing the fisheries on a sustainable basis, with follow-up data for long-term monitoring and evaluation of the overall project goal. A similar survey, conducted in 1996, provided the baseline against which data from the current survey was evaluated. In a cross-sectional survey, anthropometric data was collected from 576 children aged 3-60 months in 282 fisherfolk households around the southern sector of Kainji Lake, Nigeria. In addition, data was collected on the nutritional status and fertility of the mothers, vaccination coverage of children and child survival indicators. For control purposes, 374 children and 181 mothers from non-fishing households around Kainji Lake were likewise covered by the survey. A standardised questionnaire was used to collect relevant data, while anthropometric measurements were made using appropriate equipment. Data compilation and analysis was carried out with a specially designed Microsoft Access application, using NCHS reference data for the analysis of anthropometric measurements. Statistical significance testing was done using EPI-INFO" software. The results of the follow-up survey indicate a slight increase in the percentage of stunted pre-school children in fishing households around Kainji Lake, from 40% in 1996 to 41% in 1999. This increase is however not statistically significant (p= 0.704). Over the same period, the percentage of stunted children in non-fishing households increased from 37% to 39% (p= 0.540), which is also not statistically significant. Likewise, there were no statistically significant differences between the 1996 and 1999 results for the prevalence of either wasted or underweight children in fishing households. The same applies to children from non-fishing households. In addition, vaccination coverage remains very low while infant and child mortality rates continue to be extremely high with about 1 in 5 children dying before their fifth birthday. There has been no perceptible and lasting improvement in the standard of living of fishing households over the course of the second project phase as indicated by the persistently high prevalence of stunting. The situation is the same for the control group, indicating that for the region as a whole, a number of factors beyond the immediate influence of the project continue to negatively impact on the standard of living. The results also show that the project activities have not had any negative long-term effect on the nutritional status of the beneficiaries. (PDF contains 44 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel account of the theory of commutative spectral triples and their two closest noncommutative generalisations, almost-commutative spectral triples and toric noncommutative manifolds, with a focus on reconstruction theorems, viz, abstract, functional-analytic characterisations of global-analytically defined classes of spectral triples. We begin by reinterpreting Connes's reconstruction theorem for commutative spectral triples as a complete noncommutative-geometric characterisation of Dirac-type operators on compact oriented Riemannian manifolds, and in the process clarify folklore concerning stability of properties of spectral triples under suitable perturbation of the Dirac operator. Next, we apply this reinterpretation of the commutative reconstruction theorem to obtain a reconstruction theorem for almost-commutative spectral triples. In particular, we propose a revised, manifestly global-analytic definition of almost-commutative spectral triple, and, as an application of this global-analytic perspective, obtain a general result relating the spectral action on the total space of a finite normal compact oriented Riemannian cover to that on the base space. Throughout, we discuss the relevant refinements of these definitions and results to the case of real commutative and almost-commutative spectral triples. Finally, we outline progess towards a reconstruction theorem for toric noncommutative manifolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis introduces fundamental equations and numerical methods for manipulating surfaces in three dimensions via conformal transformations. Conformal transformations are valuable in applications because they naturally preserve the integrity of geometric data. To date, however, there has been no clearly stated and consistent theory of conformal transformations that can be used to develop general-purpose geometry processing algorithms: previous methods for computing conformal maps have been restricted to the flat two-dimensional plane, or other spaces of constant curvature. In contrast, our formulation can be used to produce---for the first time---general surface deformations that are perfectly conformal in the limit of refinement. It is for this reason that we commandeer the title Conformal Geometry Processing.

The main contribution of this thesis is analysis and discretization of a certain time-independent Dirac equation, which plays a central role in our theory. Given an immersed surface, we wish to construct new immersions that (i) induce a conformally equivalent metric and (ii) exhibit a prescribed change in extrinsic curvature. Curvature determines the potential in the Dirac equation; the solution of this equation determines the geometry of the new surface. We derive the precise conditions under which curvature is allowed to evolve, and develop efficient numerical algorithms for solving the Dirac equation on triangulated surfaces.

From a practical perspective, this theory has a variety of benefits: conformal maps are desirable in geometry processing because they do not exhibit shear, and therefore preserve textures as well as the quality of the mesh itself. Our discretization yields a sparse linear system that is simple to build and can be used to efficiently edit surfaces by manipulating curvature and boundary data, as demonstrated via several mesh processing applications. We also present a formulation of Willmore flow for triangulated surfaces that permits extraordinarily large time steps and apply this algorithm to surface fairing, geometric modeling, and construction of constant mean curvature (CMC) surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid bilayer membranes are models for cell membranes--the structure that helps regulate cell function. Cell membranes are heterogeneous, and the coupling between composition and shape gives rise to complex behaviors that are important to regulation. This thesis seeks to systematically build and analyze complete models to understand the behavior of multi-component membranes.

We propose a model and use it to derive the equilibrium and stability conditions for a general class of closed multi-component biological membranes. Our analysis shows that the critical modes of these membranes have high frequencies, unlike single-component vesicles, and their stability depends on system size, unlike in systems undergoing spinodal decomposition in flat space. An important implication is that small perturbations may nucleate localized but very large deformations. We compare these results with experimental observations.

We also study open membranes to gain insight into long tubular membranes that arise for example in nerve cells. We derive a complete system of equations for open membranes by using the principle of virtual work. Our linear stability analysis predicts that the tubular membranes tend to have coiling shapes if the tension is small, cylindrical shapes if the tension is moderate, and beading shapes if the tension is large. This is consistent with experimental observations reported in the literature in nerve fibers. Further, we provide numerical solutions to the fully nonlinear equilibrium equations in some problems, and show that the observed mode shapes are consistent with those suggested by linear stability. Our work also proves that beadings of nerve fibers can appear purely as a mechanical response of the membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the saturated diffraction efficiency has been optimized by considering the effect of the absorption of the recording light on a crossed-beam grating with 90 degrees recording geometry in Fe:LiNbO3 crystals. The dependence of saturated diffraction efficiency on the doping levels with a known oxidation-reduction state, as well as the dependence of saturated diffraction efficiency on oxidation-reduction state with known doping levels, has been investigated. Two competing effects on the saturated diffraction efficiency were discussed, and the intensity profile of the diffracted beam at the output boundary has also been investigated. The results show that the maximal saturated diffraction efficiency can be obtained in crystals with moderate doping levels and modest oxidation state. An experimental verification is performed and the results are consistent with those of the theoretical calculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a novel class of algorithms for the solution of scattering and eigenvalue problems on general two-dimensional domains under a variety of boundary conditions, including non-smooth domains and certain "Zaremba" boundary conditions - for which Dirichlet and Neumann conditions are specified on various portions of the domain boundary. The theoretical basis of the methods for the Zaremba problems on smooth domains concern detailed information, which is put forth for the first time in this thesis, about the singularity structure of solutions of the Laplace operator under boundary conditions of Zaremba type. The new methods, which are based on use of Green functions and integral equations, incorporate a number of algorithmic innovations, including a fast and robust eigenvalue-search algorithm, use of the Fourier Continuation method for regularization of all smooth-domain Zaremba singularities, and newly derived quadrature rules which give rise to high-order convergence even around singular points for the Zaremba problem. The resulting algorithms enjoy high-order convergence, and they can tackle a variety of elliptic problems under general boundary conditions, including, for example, eigenvalue problems, scattering problems, and, in particular, eigenfunction expansion for time-domain problems in non-separable physical domains with mixed boundary conditions.