979 resultados para Numerical renormalization-group


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study a Luttinger liquid (LL) coupled to a generic environment consisting of bosonic modes with arbitrary density-density and current-current interactions. The LL can be either in the conducting phase and perturbed by a weak scatterer or in the insulating phase and perturbed by a weak link. The environment modes can also be scattered by the imperfection in the system with arbitrary transmission and reflection amplitudes. We present a general method of calculating correlation functions under the presence of the environment and prove the duality of exponents describing the scaling of the weak scatterer and of the weak link. This duality holds true for a broad class of models and is sensitive to neither interaction nor environmental modes details, thus it shows up as the universal property. It ensures that the environment cannot generate new stable fixed points of the renormalization group flow. Thus, the LL always flows toward either conducting or insulating phase. Phases are separated by a sharp boundary which is shifted by the influence of the environment. Our results are relevant, for example, for low-energy transport in (i) an interacting quantum wire or a carbon nanotube where the electrons are coupled to the acoustic phonons scattered by the lattice defect; (ii) a mixture of interacting fermionic and bosonic cold atoms where the bosonic modes are scattered due to an abrupt local change of the interaction; (iii) mesoscopic electric circuits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on dynamic renormalization group techniques, this letter analyzes the effects of external stochastic perturbations on the dynamical properties of cholesteric liquid crystals, studied in presence of a random magnetic field. Our analysis quantifies the nature of the temperature dependence of the dynamics; the results also highlight a hitherto unexplored regime in cholesteric liquid crystal dynamics. We show that stochastic fluctuations drive the system to a second-ordered Kosterlitz-Thouless phase transition point, eventually leading to a Kardar-Parisi-Zhang (KPZ) universality class. The results go beyond quasi-first order mean-field theories, and provides the first theoretical understanding of a KPZ phase in distorted nematic liquid crystal dynamics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acknowledgments The authors acknowledge the support from Engineering and Physical Sciences Research Council, grant number EP/M002322/1. The authors would also like to thank Numerical Analysis Group at the Rutherford Appleton Laboratory for their FORTRAN HSL packages (HSL, a collection of Fortran codes for large-scale scientific computation. See http://www.hsl.rl.ac.uk/).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The emerging field of quantum thermodynamics is contributing important results and insights into archetypal many-body problems, including quantum phase transitions. Still, the question whether out-of-equilibrium quantities, such as fluctuations of work, exhibit critical scaling after a sudden quench in a closed system has remained elusive. Here, we take a novel approach to the problem by studying a quench across an impurity quantum critical point. By performing density matrix renormalization group computations on the two-impurity Kondo model, we are able to establish that the irreversible work produced in a quench exhibits finite-size scaling at quantum criticality. This scaling faithfully predicts the equilibrium critical exponents for the crossover length and the order parameter of the model, and, moreover, implies a new exponent for the rescaled irreversible work. By connecting the irreversible work to the two-impurity spin correlation function, our findings can be tested experimentally.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A natural way to generalize tensor network variational classes to quantum field systems is via a continuous tensor contraction. This approach is first illustrated for the class of quantum field states known as continuous matrix-product states (cMPS). As a simple example of the path-integral representation we show that the state of a dynamically evolving quantum field admits a natural representation as a cMPS. A completeness argument is also provided that shows that all states in Fock space admit a cMPS representation when the number of variational parameters tends to infinity. Beyond this, we obtain a well-behaved field limit of projected entangled-pair states (PEPS) in two dimensions that provide an abstract class of quantum field states with natural symmetries. We demonstrate how symmetries of the physical field state are encoded within the dynamics of an auxiliary field system of one dimension less. In particular, the imposition of Euclidean symmetries on the physical system requires that the auxiliary system involved in the class' definition must be Lorentz-invariant. The physical field states automatically inherit entropy area laws from the PEPS class, and are fully described by the dissipative dynamics of a lower dimensional virtual field system. Our results lie at the intersection many-body physics, quantum field theory and quantum information theory, and facilitate future exchanges of ideas and insights between these disciplines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We determine numerically the single-particle and the two-particle spectrum of the three-state quantum Potts model on a lattice by using the density matrix renormalization group method, and extract information on the asymptotic (small momentum) S-matrix of the quasiparticles. The low energy part of the finite size spectrum can be understood in terms of a simple effective model introduced in a previous work, and is consistent with an asymptotic S-matrix of an exchange form below a momentum scale p*. This scale appears to vanish faster than the Compton scale, mc, as one approaches the critical point, suggesting that a dangerously irrelevant operator may be responsible for the behaviour observed on the lattice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We compute how bulk loops renormalize both bulk and brane effective interactions for codimension-two branes in 6D gauged chiral supergravity, as functions of the brane tension and brane-localized flux. We do so by explicitly integrating out hyper- and gauge-multiplets in 6D gauged chiral supergravity compactified to 4D on a flux-stabilized 2D rugby-ball geometry, specializing the results of a companion paper, arXiv:1210.3753 , to the supersymmetric case. While the brane back-reaction generically breaks supersymmetry, we show that the bulk supersymmetry can be preserved if the amount of brane- localized flux is related in a specific BPS-like way to the brane tension, and verify that the loop corrections to the brane curvature vanish in this special case. In these systems it is the brane-bulk couplings that fix the size of the extra dimensions, and we show that in some circumstances the bulk geometry dynamically adjusts to ensure the supersymmetric BPS-like condition is automatically satisfied. We investigate the robustness of this residual supersymmetry to loops of non-supersymmetric matter on the branes, and show that supersymmetry- breaking effects can enter only through effective brane-bulk interactions involving at least two derivatives. We comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems. © 2013 SISSA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transverse momentum dependent parton distribution/fragmentation functions (TMDs) are essential in the factorization of a number of processes like Drell-Yan scattering, vector boson production, semi-inclusive deep inelastic scattering, etc. We provide a comprehensive study of unpolarized TMDs at next-to-next-to-leading order, which includes an explicit calculation of these TMDs and an extraction of their matching coefficients onto their integrated analogues, for all flavor combinations. The obtained matching coefficients are important for any kind of phenomenology involving TMDs. In the present study each individual TMD is calculated without any reference to a specific process. We recover the known results for parton distribution functions and provide new results for the fragmentation functions. The results for the gluon transverse momentum dependent fragmentation functions are presented for the first time at one and two loops. We also discuss the structure of singularities of TMD operators and TMD matrix elements, crossing relations between TMD parton distribution functions and TMD fragmentation functions, and renormalization group equations. In addition, we consider the behavior of the matching coefficients at threshold and make a conjecture on their structure to all orders in perturbation theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents studies of the role of disorder in non-equilibrium quantum systems. The quantum states relevant to dynamics in these systems are very different from the ground state of the Hamiltonian. Two distinct systems are studied, (i) periodically driven Hamiltonians in two dimensions, and (ii) electrons in a one-dimensional lattice with power-law decaying hopping amplitudes. In the first system, the novel phases that are induced from the interplay of periodic driving, topology and disorder are studied. In the second system, the Anderson transition in all the eigenstates of the Hamiltonian are studied, as a function of the power-law exponent of the hopping amplitude.

In periodically driven systems the study focuses on the effect of disorder in the nature of the topology of the steady states. First, we investigate the robustness to disorder of Floquet topological insulators (FTIs) occurring in semiconductor quantum wells. Such FTIs are generated by resonantly driving a transition between the valence and conduction band. We show that when disorder is added, the topological nature of such FTIs persists as long as there is a gap at the resonant quasienergy. For strong enough disorder, this gap closes and all the states become localized as the system undergoes a transition to a trivial insulator.

Interestingly, the effects of disorder are not necessarily adverse, disorder can also induce a transition from a trivial to a topological system, thereby establishing a Floquet Topological Anderson Insulator (FTAI). Such a state would be a dynamical realization of the topological Anderson insulator. We identify the conditions on the driving field necessary for observing such a transition. We realize such a disorder induced topological Floquet spectrum in the driven honeycomb lattice and quantum well models.

Finally, we show that two-dimensional periodically driven quantum systems with spatial disorder admit a unique topological phase, which we call the anomalous Floquet-Anderson insulator (AFAI). The AFAI is characterized by a quasienergy spectrum featuring chiral edge modes coexisting with a fully localized bulk. Such a spectrum is impossible for a time-independent, local Hamiltonian. These unique characteristics of the AFAI give rise to a new topologically protected nonequilibrium transport phenomenon: quantized, yet nonadiabatic, charge pumping. We identify the topological invariants that distinguish the AFAI from a trivial, fully localized phase, and show that the two phases are separated by a phase transition.

The thesis also present the study of disordered systems using Wegner's Flow equations. The Flow Equation Method was proposed as a technique for studying excited states in an interacting system in one dimension. We apply this method to a one-dimensional tight binding problem with power-law decaying hoppings. This model presents a transition as a function of the exponent of the decay. It is shown that the the entire phase diagram, i.e. the delocalized, critical and localized phases in these systems can be studied using this technique. Based on this technique, we develop a strong-bond renormalization group that procedure where we solve the Flow Equations iteratively. This renormalization group approach provides a new framework to study the transition in this system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For simulating multi-scale complex flow fields like turbulent flows, the high order accurate schemes are preferred. In this paper, a scheme construction with numerical flux residual correction (NFRC) is presented. Any order accurate difference approximation can be obtained with the NFRC. To improve the resolution of the shock, the constructed schemes are modified with group velocity control (GVC) and weighted group velocity control (WGVC). The method of scheme construction is simple, and it is used to solve practical problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laterally loaded piles are a typical situation for a large number of cases in which deep foundations are used. Dissertation herein reported, is a focus upon the numerical simulation of laterally loaded piles. In the first chapter the best model settings are largely discussed, so a clear idea about the effects of interface adoption, model dimension, refinement cluster and mesh coarseness is reached. At a second stage, there are three distinct parametric analyses, in which the model response sensibility is studied for variation of interface reduction factor, Eps50 and tensile cut-off. In addition, the adoption of an advanced soil model is analysed (NGI-ADP). This was done in order to use the complex behaviour (different undrained shear strengths are involved) that governs the resisting process of clay under short time static loads. Once set a definitive model, a series of analyses has been carried out with the objective of defining the resistance-deflection (P-y) curves for Plaxis3D (2013) data. Major results of a large number of comparisons made with curves from API (America Petroleum Institute) recommendation are that the empirical curves have almost the same ultimate resistance but a bigger initial stiffness. In the second part of the thesis a simplified structural preliminary design of a jacket structure has been carried out to evaluate the environmental forces that act on it and on its piles foundation. Finally, pile lateral response is studied using the empirical curves.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In dieser Arbeit stelle ich Aspekte zu QCD Berechnungen vor, welche eng verknüpft sind mit der numerischen Auswertung von NLO QCD Amplituden, speziell der entsprechenden Einschleifenbeiträge, und der effizienten Berechnung von damit verbundenen Beschleunigerobservablen. Zwei Themen haben sich in der vorliegenden Arbeit dabei herauskristallisiert, welche den Hauptteil der Arbeit konstituieren. Ein großer Teil konzentriert sich dabei auf das gruppentheoretische Verhalten von Einschleifenamplituden in QCD, um einen Weg zu finden die assoziierten Farbfreiheitsgrade korrekt und effizient zu behandeln. Zu diesem Zweck wird eine neue Herangehensweise eingeführt welche benutzt werden kann, um farbgeordnete Einschleifenpartialamplituden mit mehreren Quark-Antiquark Paaren durch Shufflesummation über zyklisch geordnete primitive Einschleifenamplituden auszudrücken. Ein zweiter großer Teil konzentriert sich auf die lokale Subtraktion von zu Divergenzen führenden Poltermen in primitiven Einschleifenamplituden. Hierbei wurde im Speziellen eine Methode entwickelt, um die primitiven Einchleifenamplituden lokal zu renormieren, welche lokale UV Counterterme und effiziente rekursive Routinen benutzt. Zusammen mit geeigneten lokalen soften und kollinearen Subtraktionstermen wird die Subtraktionsmethode dadurch auf den virtuellen Teil in der Berechnung von NLO Observablen erweitert, was die voll numerische Auswertung der Einschleifenintegrale in den virtuellen Beiträgen der NLO Observablen ermöglicht. Die Methode wurde schließlich erfolgreich auf die Berechnung von NLO Jetraten in Elektron-Positron Annihilation im farbführenden Limes angewandt.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A mathematical model for the group combustion of pulverized coal particles was developed in a previous work. It includes the Lagrangian description of the dehumidification, devolatilization and char gasification reactions of the coal particles in the homogenized gaseous environment resulting from the three fuels, CO, H2 and volatiles, supplied by the gasification of the particles and their simultaneous group combustion by the gas phase oxidation reactions, which are considered to be very fast. This model is complemented here with an analysis of the particle dynamics, determined principally by the effects of aerodynamic drag and gravity, and its dispersion based on a stochastic model. It is also extended to include two other simpler models for the gasification of the particles: the first one for particles small enough to extinguish the surrounding diffusion flames, and a second one for particles with small ash content when the porous shell of ashes remaining after gasification of the char, non structurally stable, is disrupted. As an example of the applicability of the models, they are used in the numerical simulation of an experiment of a non-swirling pulverized coal jet with a nearly stagnant air at ambient temperature, with an initial region of interaction with a small annular methane flame. Computational algorithms for solving the different stages undergone by a coal particle during its combustion are proposed. For the partial differential equations modeling the gas phase, a second order finite element method combined with a semi-Lagrangian characteristics method are used. The results obtained with the three versions of the model are compared among them and show how the first of the simpler models fits better the experimental results.