988 resultados para Numerical calculation
Resumo:
In this paper, the numerical simulation of the 3D seepage flow with fractional derivatives in porous media is considered under two special cases: non-continued seepage flow in uniform media (NCSFUM) and continued seepage flow in non-uniform media (CSF-NUM). A fractional alternating direction implicit scheme (FADIS) for the NCSF-UM and a modified Douglas scheme (MDS) for the CSF-NUM are proposed. The stability, consistency and convergence of both FADIS and MDS in a bounded domain are discussed. A method for improving the speed of convergence by Richardson extrapolation for the MDS is also presented. Finally, numerical results are presented to support our theoretical analysis.
Resumo:
In this paper, we consider the following non-linear fractional reaction–subdiffusion process (NFR-SubDP): Formula where f(u, x, t) is a linear function of u, the function g(u, x, t) satisfies the Lipschitz condition and 0Dt1–{gamma} is the Riemann–Liouville time fractional partial derivative of order 1 – {gamma}. We propose a new computationally efficient numerical technique to simulate the process. Firstly, the NFR-SubDP is decoupled, which is equivalent to solving a non-linear fractional reaction–subdiffusion equation (NFR-SubDE). Secondly, we propose an implicit numerical method to approximate the NFR-SubDE. Thirdly, the stability and convergence of the method are discussed using a new energy method. Finally, some numerical examples are presented to show the application of the present technique. This method and supporting theoretical results can also be applied to fractional integrodifferential equations.
Resumo:
In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.
Resumo:
The results of a numerical investigation into the errors for least squares estimates of function gradients are presented. The underlying algorithm is obtained by constructing a least squares problem using a truncated Taylor expansion. An error bound associated with this method contains in its numerator terms related to the Taylor series remainder, while its denominator contains the smallest singular value of the least squares matrix. Perhaps for this reason the error bounds are often found to be pessimistic by several orders of magnitude. The circumstance under which these poor estimates arise is elucidated and an empirical correction of the theoretical error bounds is conjectured and investigated numerically. This is followed by an indication of how the conjecture is supported by a rigorous argument.
Resumo:
This paper is aimed at investigating the effect of web openings on the plastic bending behaviour and section moment capacity of a new cold-formed steel beam known as LiteSteel beam (LSB) using numerical modelling. Different LSB sections with varying circular hole diameter and spacing were considered. A simplified but appropriate numerical modelling technique was developed for the modelling of monosymmetric sections such as LSBs subject to bending, and was used to simulate a series of section moment capacity tests of LSB flexural members with web openings. The buckling and ultimate strength behaviour was investigated in detail and the modeling technique was further improved through a comparison of numerical and experimental results. This paper describes the simplified finite element modeling technique used in this study that includes all the significant behavioural effects affecting the plastic bending behaviour and section moment capacity of LSB sections with web holes. Numerical and test results and associated findings are also presented.
Resumo:
We report numerical analysis and experimental observation of strongly localized plasmons guided by triangular metal wedges and pay special attention to the effect of smooth (nonzero radius) tips. Dispersion, dissipation, and field structure of such wedge plasmons are analyzed using the compact two-dimensional finite-difference time-domain algorithm. Experimental observation is conducted by the end-fire excitation and near-field scanning optical microscope detection of the predicted plasmons on 40°silver nanowedges with the wedge tip radii of 20, 85, and 125 nm that were fabricated by the focused-ion beam method. The effect of smoothing wedge tips is shown to be similar to that of increasing wedge angle. Increasing wedge angle or wedge tip radius results in increasing propagation distance at the same time as decreasing field localization (decreasing wave number). Quantitative differences between the theoretical and experimental propagation distances are suggested to be due to a contribution of scattered bulk and surface waves near the excitation region as well as the addition of losses due to surface roughness. The theoretical and measured propagation distances are several plasmon wavelengths and are useful for a range of nano-optical applications
Resumo:
In this paper, A Riesz fractional diffusion equation with a nonlinear source term (RFDE-NST) is considered. This equation is commonly used to model the growth and spreading of biological species. According to the equivalent of the Riemann-Liouville(R-L) and Gr¨unwald-Letnikov(GL) fractional derivative definitions, an implicit difference approximation (IFDA) for the RFDE-NST is derived. We prove the IFDA is unconditionally stable and convergent. In order to evaluate the efficiency of the IFDA, a comparison with a fractional method of lines (FMOL) is used. Finally, two numerical examples are presented to show that the numerical results are in good agreement with our theoretical analysis.
Resumo:
There are increasing indications that the contribution of holding costs and its impact on housing affordability is very significant. Their importance and perceived high level impact can be gauged from considering the unprecedented level of attention policy makers have given them recently. This may be evidenced by the embedding of specific strategies to address burgeoning holding costs (and particularly those cost savings associated with streamlining regulatory assessment) within statutory instruments such as the Queensland Housing Affordability Strategy, and the South East Queensland Regional Plan. However, several key issues require further investigation. Firstly, the computation and methodology behind the calculation of holding costs varies widely. In fact, it is not only variable, but in some instances completely ignored. Secondly, some ambiguity exists in terms of the inclusion of various elements of holding costs and assessment of their relative contribution. Perhaps this may in part be explained by their nature: such costs are not always immediately apparent. They are not as visible as more tangible cost items associated with greenfield development such as regulatory fees, government taxes, acquisition costs, selling fees, commissions and others. Holding costs are also more difficult to evaluate since for the most part they must be ultimately assessed over time in an ever-changing environment based on their strong relationship with opportunity cost which is in turn dependant, inter alia, upon prevailing inflation and / or interest rates. This paper seeks to provide a more detailed investigation of those elements related to holding costs, and in so doing determine the size of their impact specifically on the end user. It extends research in this area clarifying the extent to which holding costs impact housing affordability. Geographical diversity indicated by the considerable variation between various planning instruments and the length of regulatory assessment periods suggests further research should adopt a case study approach in order to test the relevance of theoretical modelling conducted.
Resumo:
In this thesis an investigation into theoretical models for formation and interaction of nanoparticles is presented. The work presented includes a literature review of current models followed by a series of five chapters of original research. This thesis has been submitted in partial fulfilment of the requirements for the degree of doctor of philosophy by publication and therefore each of the five chapters consist of a peer-reviewed journal article. The thesis is then concluded with a discussion of what has been achieved during the PhD candidature, the potential applications for this research and ways in which the research could be extended in the future. In this thesis we explore stochastic models pertaining to the interaction and evolution mechanisms of nanoparticles. In particular, we explore in depth the stochastic evaporation of molecules due to thermal activation and its ultimate effect on nanoparticles sizes and concentrations. Secondly, we analyse the thermal vibrations of nanoparticles suspended in a fluid and subject to standing oscillating drag forces (as would occur in a standing sound wave) and finally on lattice surfaces in the presence of high heat gradients. We have described in this thesis a number of new models for the description of multicompartment networks joined by a multiple, stochastically evaporating, links. The primary motivation for this work is in the description of thermal fragmentation in which multiple molecules holding parts of a carbonaceous nanoparticle may evaporate. Ultimately, these models predict the rate at which the network or aggregate fragments into smaller networks/aggregates and with what aggregate size distribution. The models are highly analytic and describe the fragmentation of a link holding multiple bonds using Markov processes that best describe different physical situations and these processes have been analysed using a number of mathematical methods. The fragmentation of the network/aggregate is then predicted using combinatorial arguments. Whilst there is some scepticism in the scientific community pertaining to the proposed mechanism of thermal fragmentation,we have presented compelling evidence in this thesis supporting the currently proposed mechanism and shown that our models can accurately match experimental results. This was achieved using a realistic simulation of the fragmentation of the fractal carbonaceous aggregate structure using our models. Furthermore, in this thesis a method of manipulation using acoustic standing waves is investigated. In our investigation we analysed the effect of frequency and particle size on the ability for the particle to be manipulated by means of a standing acoustic wave. In our results, we report the existence of a critical frequency for a particular particle size. This frequency is inversely proportional to the Stokes time of the particle in the fluid. We also find that for large frequencies the subtle Brownian motion of even larger particles plays a significant role in the efficacy of the manipulation. This is due to the decreasing size of the boundary layer between acoustic nodes. Our model utilises a multiple time scale approach to calculating the long term effects of the standing acoustic field on the particles that are interacting with the sound. These effects are then combined with the effects of Brownian motion in order to obtain a complete mathematical description of the particle dynamics in such acoustic fields. Finally, in this thesis, we develop a numerical routine for the description of "thermal tweezers". Currently, the technique of thermal tweezers is predominantly theoretical however there has been a handful of successful experiments which demonstrate the effect it practise. Thermal tweezers is the name given to the way in which particles can be easily manipulated on a lattice surface by careful selection of a heat distribution over the surface. Typically, the theoretical simulations of the effect can be rather time consuming with supercomputer facilities processing data over days or even weeks. Our alternative numerical method for the simulation of particle distributions pertaining to the thermal tweezers effect use the Fokker-Planck equation to derive a quick numerical method for the calculation of the effective diffusion constant as a result of the lattice and the temperature. We then use this diffusion constant and solve the diffusion equation numerically using the finite volume method. This saves the algorithm from calculating many individual particle trajectories since it is describes the flow of the probability distribution of particles in a continuous manner. The alternative method that is outlined in this thesis can produce a larger quantity of accurate results on a household PC in a matter of hours which is much better than was previously achieveable.