378 resultados para Nucleoside Deaminases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purine nucleoside phosphorylase (PNP) is a ubiquitous enzyme, which plays a key role in the purine salvage pathway, and PNP deficiency in humans leads to an impairment of T-cell function, usually with no apparent effects on B-cell function. Human PNP has been submitted to intensive structure-based design of inhibitors, most of them using low-resolution structures of human PNP. Here we report the crystal structure of human PNP in complex with hypoxanthine, refined to 2.6 Angstrom resolution. The intermolecular interaction between ligand and PNP is discussed. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purine nucleoside phosphorylase (PNP) is a key enzyme in the purine-salvage pathway, which allows cells to utilize preformed bases and nucleosides in order to synthesize nucleotides. PNP is specific for purine nucleosides in the beta-configuration and exhibits a strong preference for purines containing a 6-keto group and ribosyl-containing nucleosides relative to the corresponding analogues. PNP was crystallized in complex with ligands and data collection was performed using synchrotron radiation. This work reports the structure of human PNP in complex with guanosine (at 2.80 angstrom resolution), 3' deoxyguanosine (at 2.86 angstrom resolution) and 8-azaguanine (at 2.85 angstrom resolution). These structures were compared with the PNP-guanine, PNP-inosine and PNP-immucillin-H complexes solved previously.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystallographic screening has been used to identify new inhibitors for potential target for drug development. Here, we describe the application of the crystallographic screening to assess the structural basis of specificity of ligands against a protein target. The method is efficient and results in detailed crystallographic information. The utility of the method is demonstrated in the study of the structural basis for specificity of ligands for human purine nucleoside phosphorylase (PNP). Purine nucleoside phosphorylase catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. This enzyme is a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. This methodology may help in the future development of a new generation of PNP inhibitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. PNP is a target for inhibitor development aiming at T-cell immune response modulation. This work reports on the crystallographic study of the complex of human PNP-immucillin-H (HsPNP-ImmH) solved at 2.6 Angstrom resolution using synchrotron radiation. Immucillin-H (ImmH) inhibits the growth of malignant T-cell lines in the presence of deoxyguanosine without affecting non-T-cell tumor lines. ImmH inhibits activated normal human T cells after antigenic stimulation in vitro. These biological effects of ImmH suggest that this agent may have utility in the treatment of certain human diseases characterized by abnormal T-cell growth or activation. This is the first structural report of human PNP complexed with immucillin-H. The comparison of the complex HsPNP-ImmH with recent crystallographic structures of human PNP explains the high specificity of immucillin-H for human PNP. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen-binding properties, blood gases, and acid-base parameters were studied in tegu lizards, Tupinambis merianae, at different seasons and temperatures. Independent of temperature and pH, blood oxygen affinity was higher in dormant lizards than in those active during the summer. Haematocrit (Hct) and hemoglobin content ([Hb]) were greater in active lizards resulting in a higher oxygen-carrying capacity. Nucleoside triphosphate content ([NTP]) was reduced during dormancy, but the ratio between [NTP] and [Hb] remained unchanged. Dormancy was accompanied by an increase in plasma bicarbonate ([HCO(3)(-)]PI) and an elevation of arterial CO(2) partial pressure (P(aCO2)) and CO(2) content in the plasma (C(PlCO2)). These changes in acid-base parameters persist over a broad range of body temperatures. In vivo, arterial O(2) partial pressure (Pa(O2)) and O(2) content (Ca(O2)) were not affected by season and tended to increase with temperature. Arterial pH (pH(a)) of dormant animals is reduced compared to active lizards at body temperatures below 15 degreesC, while no significant difference was noticed at higher temperatures. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The X-ray crystal structure of a complex between ribonuclease T-1 and guanylyl(3'-6')-6'-deoxyhomouridine (GpcU) has been determined at 2.0 Angstrom resolution. This Ligand is an isosteric analogue of the minimal RNA substrate, guanylyl(3'-5')uridine (GpU), where a methylene is substituted for the uridine 5'-oxygen atom. Two protein molecules are part of the asymmetric unit and both have a GpcU bound at the active site in the same manner. The protein-protein interface reveals an extended aromatic stack involving both guanines and three enzyme phenolic groups. A third GpcU has its guanine moiety stacked on His92 at the active site on enzyme molecule A and interacts with GpcU on molecule B in a neighboring unit via hydrogen bonding between uridine ribose 2'- and 3'-OH groups. None of the uridine moieties of the three GpcU molecules in the asymmetric unit interacts directly with the protein. GpcU-active-site interactions involve extensive hydrogen bonding of the guanine moiety at the primary recognition site and of the guanosine 2'-hydroxyl group with His40 and Glu58. on the other hand, the phosphonate group is weakly bound only by a single hydrogen bond with Tyr38, unlike ligand phosphate groups of other substrate analogues and 3'-GMP, which hydrogen-bonded with three additional active-site residues. Hydrogen bonding of the guanylyl 2'-OH group and the phosphonate moiety is essentially the same as that recently observed for a novel structure of a RNase T-1-3'-GMP complex obtained immediately after in situ hydrolysis of exo-(S-p)-guanosine 2',3'-cyclophosphorothioate [Zegers et al. (1998) Nature Struct. Biol. 5, 280-283]. It is likely that GpcU at the active site represents a nonproductive binding mode for GpU [:Steyaert, J., and Engleborghs (1995) fur. J. Biochem. 233, 140-144]. The results suggest that the active site of ribonuclease T-1 is adapted for optimal tight binding of both the guanylyl 2'-OH and phosphate groups (of GpU) only in the transition state for catalytic transesterification, which is stabilized by adjacent binding of the leaving nucleoside (U) group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuberculosis (TB) remains the leading cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. However, no new classes of drugs for TB have been developed in the past 30 years. Therefore there is an urgent need to develop faster acting and effective new antitubercular agents, preferably belonging to new structural classes, to better combat TB, including MDR-TB, to shorten the duration of current treatment to improve patient compliance, and to provide effective treatment of latent tuberculosis infection. The enzymes in the shikimate pathway are potential targets for development of a new generation of antitubercular drugs. The shikimate pathway has been shown by disruption of aroK gene to be essential for the Mycobacterium tuberculosis. The shikimate kinase (SK) catalyses the phosphorylation of the 3-hydroxyl group of shikimic acid (shikimate) using ATP as a co-substrate. SK belongs to family of nucleoside monophosphate (NMP) kinases. The enzyme is an alpha/beta protein consisting of a central sheet of five parallel beta-strands flanked by alpha-helices. The shikimate kinases are composed of three domains: Core domain, Lid domain and Shikimate-binding domain. The Lid and Shikimate-binding domains are responsible for large conformational changes during catalysis. More recently, the precise interactions between SK and substrate have been elucidated, showing the binding of shikimate with three charged residues conserved among the SK sequences. The elucidation of interactions between MtSK and their substrates is crucial for the development of a new generation of drugs against tuberculosis through rational drug design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, there are 8 million new cases and 2 million deaths annually from tuberculosis, and it is expected that a total of 225 million new cases and 79 million deaths will occur between 1998 and 2030. The reemergence of tuberculosis as a public health threat, the high susceptibility of HIV-infected persons, and the proliferation of multi-drug-resistant strains have created a need to develop new antimycobacterial agents. The existence of homologues to the shikimate pathway enzymes has been predicted by the determination of the genome sequence of Mycobacterium tuberculosis. We have previously reported the cloning and overexpression of M. tuberculosis aro A-encoded EPSP synthase in both soluble and active forms, without IPTG induction. Here, we describe the purification of M. tuberculosis EPSP synthase (mtEPSPS) expressed in Escherichia coli BL21(DE3) host cells. Purification of mtEPSPS was achieved by a one-step purification protocol using an anion exchange column. The activity of the homogeneous enzyme was measured by a coupled assay using purified shikimate kinase and purine nucleoside phosphorylase proteins. A total of 53 mg of homogeneous enzyme could be obtained from 1 L of LB cell culture, with a specific activity value of approximately 18 U mg-1. The results presented here provide protein in quantities necessary for structural and kinetic studies, which are currently underway in our laboratory. © 2002 Elsevier Science (USA). All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this paper was to evaluate the immune reconstitution of HIV-1 patients subjected to highly active antiretroviral therapy (HAART) for two years or more according to CD 45RA and CD 45RO cell count; determination of IL-2, IFN-γ, IL-4, IL-10 and TNF-α serum levels; CD 4 + T and CD 8 + T lymphocyte count; and plasma viral load (VL) determination. For this purpose, a cross sectional study was carried out in the Tropical Diseases Area, Botucatu School of Medicine, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil. Between June 2001 and April 2002, 37 HIV-1 infected patients were evaluated, 13 with treatment indication but untreated (G1), 9 subjected to HAART for 5-7 months (G2), and 15 treated for two years or more (G3); both treated groups used medication regularly and without failure. Forty-nine normal individuals were studied as controls (GC-1 and GC-2). There was a tendency (p<0.10) for the predominance of two nucleoside reverse transcriptase inhibitors (NRTI) associated with one non-nucleoside reverse transcriptase inhibitor (NNRTI) regimen in G2; and two NRTI associated with a protease inhibitor (PI) in G3. Statistical differences between groups were seen for CD 45RA (G1<[G3=GC-2]; p<0.05) and CD 45RO (G1[G2=G3]; p<0.001), TNF-α serum determination ([G1>G3; G2=intermediate]>GC-1; p<0.001), IL-2 (G1<[G2=G3=GC-1]; p<0.01), IFN-γ ([G1=GC-1]>[GC-2=G3]; p<0.001), IL-4 and IL-10 ([G1=G2=G3]>GC-1; p<0.001), serum cytokine profiles, with a higher proportion of subtype 2 in G1 and mature subtype 0 in G2 and G3 (p<0.005). There was no statistical difference for CD 8 + T lymphocyte counts (G1=G2=G3; p<0.50). Consistency was seen between positive correlations of profile 1 definer cytokines (IL-2 and IFN-γ), CD 45RA and CD 45RO cells, and CD 4 + T lymphocyte counts and between positive correlations of profile 2 definer cytokines (IL-4 and IL-10) with TNF-α, and VL. The negative correlations were also consistent as they expressed the inverse of the positives. The variables with the highest number of correlations were IL-2, IFN-γ, and VL, followed by CD 45RA and CD 45RO cells, and IL-10. The variables with the lowest number of correlations were CD 4 + T and CD 8 + T lymphocytes. The results express the partial but important immune reconstitution in HIV-1 infected individuals with the interference of HAART and the importance of cytokines especially IL-2 and IFN-γ, and CD 45RA and CD 45RO cells as surrogate markers of this reconstitution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mycobacterium tuberculosis cmk gene, predicted to encode a CMP kinase (CMK), was cloned and expressed, and its product was purified to homogeneity. Steady-state kinetics confirmed that M. tuberculosis CMK is a monomer that preferentially phosphorylates CMP and dCMP by a sequential mechanism. A plausible role for CMK is discussed. Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combination Antiretroviral Therapy (cART) aims to inhibit viral replication, delay immunodeficiency progression and improve survival in AIDS patients. The objective of this study was to compare two different schemes of cART, based on plasma viral load (VL) and CD4+ T lymphocyte count, during 48 weeks of treatment. For this purpose, 472 medical charts of a Specialized Outpatient Service were reviewed from 1998 to 2005. Out of these, 58 AIDS patients who had received a triple drug scheme as the initial treatment were included in the study and two groups were formed: Group 1 (G1): 47 individuals treated with two nucleoside reverse-transcriptase inhibitors (NRTI) and one non-nucleoside reverse-transcriptase inhibitor; Group 2 (G2): 11 patients treated with two NRTI and one protease inhibitor. In G1 and G2, 53.2% and 81.8% respectively were patients with an AIDS-defining disease. The T CD4+ lymphocyte count increased progressively up until the 24th week of treatment in all patients, while VL became undetectable in 68.1% of G1 and in 63.6% of G2. The study concluded that the evolutions of laboratory tests were similar in the two treatment groups and that both presented a favorable clinical evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)