989 resultados para Nuclear science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The continental margin off northeast Australia, comprising the Great Barrier Reef (GBR) platform and Queensland Trough, is the largest tropical mixed siliciclastic/carbonate depositional system in existence. We describe a suite of 35 piston cores and two Ocean Drilling Program (ODP) sites from a 130*240 km rectangular area of the Queensland Trough, the slope and basin setting east of the central GBR platform. Oxygen isotope records, physical property (magnetic susceptibility and greyscale) logs, analyses of bulk carbonate content and radiocarbon ages at these locations are used to construct a high resolution stratigraphy. This information is used to quantify mass accumulation rates (MARs) for siliciclastic and carbonate sediments accumulating in the Queensland Trough over the last 31,000 years. For the slope, highest MARs of siliciclastic sediment occur during transgression (1.0 Million Tonnes per year; MT/yr), and lowest MARs of siliciclastic (<0.1 MT/yr) and carbonate (0.2 MT/yr) sediment occur during sea level lowstand. Carbonate MARs are similar to siliciclastic MARs for transgression and highstand (1.1-1.4 MT/yr). In contrast, for the basin, MARs of siliciclastic (0-0.1 MT/yr) and carbonate sediment (0.2-0.4 MT/yr) are continuously low, and within a factor of two, for lowstand, transgression, and highstand. Generic models for carbonate margins predict that maximum and minimum carbonate MARs on the slope will occur during highstand and lowstand, respectively. Conversely, most models for siliciclastic margins suggest maximum and minimum siliciclastic MARs will occur during lowstand and transgression, respectively. Although carbonate MARs in the Queensland Trough are similar to those predicted for carbonate depositional systems, siliciclastic MARs are the opposite. Given uniform siliciclastic MARs in the basin through time, we conclude that terrigenous material is stored on the shelf during sea level lowstand, and released to the slope during transgression as wave driven currents transport shelf sediment offshore.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Determining as accurate as possible spent nuclear fuel isotopic content is gaining importance due to its safety and economic implications. Since nowadays higher burn ups are achievable through increasing initial enrichments, more efficient burn up strategies within the reactor cores and the extension of the irradiation periods, establishing and improving computation methodologies is mandatory in order to carry out reliable criticality and isotopic prediction calculations. Several codes (WIMSD5, SERPENT 1.1.7, SCALE 6.0, MONTEBURNS 2.0 and MCNP-ACAB) and methodologies are tested here and compared to consolidated benchmarks (OECD/NEA pin cell moderated with light water) with the purpose of validating them and reviewing the state of the isotopic prediction capabilities. These preliminary comparisons will suggest what can be generally expected of these codes when applied to real problems. In the present paper, SCALE 6.0 and MONTEBURNS 2.0 are used to model the same reported geometries, material compositions and burn up history of the Spanish Van de llós II reactor cycles 7-11 and to reproduce measured isotopies after irradiation and decay times. We analyze comparisons between measurements and each code results for several grades of geometrical modelization detail, using different libraries and cross-section treatment methodologies. The power and flux normalization method implemented in MONTEBURNS 2.0 is discussed and a new normalization strategy is developed to deal with the selected and similar problems, further options are included to reproduce temperature distributions of the materials within the fuel assemblies and it is introduced a new code to automate series of simulations and manage material information between them. In order to have a realistic confidence level in the prediction of spent fuel isotopic content, we have estimated uncertainties using our MCNP-ACAB system. This depletion code, which combines the neutron transport code MCNP and the inventory code ACAB, propagates the uncertainties in the nuclide inventory assessing the potential impact of uncertainties in the basic nuclear data: cross-section, decay data and fission yields

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Infrared (IR) interferometry is a method for measuring the line-electron density of fusion plasmas. The significant performance achieved by FPGAs in solving digital signal processing tasks advocates the use of this type of technology in two-color IR interferometers of modern stellarators, such as the TJ-II (Madrid, Spain) and the future W7-X (Greifswald, Germany). In this work the implementation of a line-average electron density measuring system in an FPGA device is described. Several optimizations for multichannel systems are detailed and test results from the TJ-II as well as from a W7-X prototype are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There exists an interest in performing full core pin-by-pin computations for present nuclear reactors. In such type of problems the use of a transport approximation like the diffusion equation requires the introduction of correction parameters. Interface discontinuity factors can improve the diffusion solution to nearly reproduce a transport solution. Nevertheless, calculating accurate pin-by-pin IDF requires the knowledge of the heterogeneous neutron flux distribution, which depends on the boundary conditions of the pin-cell as well as the local variables along the nuclear reactor operation. As a consequence, it is impractical to compute them for each possible configuration. An alternative to generate accurate pin-by-pin interface discontinuity factors is to calculate reference values using zero-net-current boundary conditions and to synthesize afterwards their dependencies on the main neighborhood variables. In such way the factors can be accurately computed during fine-mesh diffusion calculations by correcting the reference values as a function of the actual environment of the pin-cell in the core. In this paper we propose a parameterization of the pin-by-pin interface discontinuity factors allowing the implementation of a cross sections library able to treat the neighborhood effect. First results are presented for typical PWR configurations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interface discontinuity factors based on the Generalized Equivalence Theory are commonly used in nodal homogenized diffusion calculations so that diffusion average values approximate heterogeneous higher order solutions. In this paper, an additional form of interface correction factors is presented in the frame of the Analytic Coarse Mesh Finite Difference Method (ACMFD), based on a correction of the modal fluxes instead of the physical fluxes. In the ACMFD formulation, implemented in COBAYA3 code, the coupled multigroup diffusion equations inside a homogenized region are reduced to a set of uncoupled modal equations through diagonalization of the multigroup diffusion matrix. Then, physical fluxes are transformed into modal fluxes in the eigenspace of the diffusion matrix. It is possible to introduce interface flux discontinuity jumps as the difference of heterogeneous and homogeneous modal fluxes instead of introducing interface discontinuity factors as the ratio of heterogeneous and homogeneous physical fluxes. The formulation in the modal space has been implemented in COBAYA3 code and assessed by comparison with solutions using classical interface discontinuity factors in the physical space

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within the framework of the Collaborative Project for a European Sodium Fast Reactor, the reactor physics group at UPM is working on the extension of its in-house multi-scale advanced deterministic code COBAYA3 to Sodium Fast Reactors (SFR). COBAYA3 is a 3D multigroup neutron kinetics diffusion code that can be used either as a pin-by-pin code or as a stand-alone nodal code by using the analytic nodal diffusion solver ANDES. It is coupled with thermalhydraulics codes such as COBRA-TF and FLICA, allowing transient analysis of LWR at both fine-mesh and coarse-mesh scales. In order to enable also 3D pin-by-pin and nodal coupled NK-TH simulations of SFR, different developments are in progress. This paper presents the first steps towards the application of COBAYA3 to this type of reactors. ANDES solver, already extended to triangular-Z geometry, has been applied to fast reactor steady-state calculations. The required cross section libraries were generated with ERANOS code for several configurations. The limitations encountered in the application of the Analytic Coarse Mesh Finite Difference (ACMFD) method –implemented inside ANDES– to fast reactors are presented and the sensitivity of the method when using a high number of energy groups is studied. ANDES performance is assessed by comparison with the results provided by ERANOS, using a mini-core model in 33 energy groups. Furthermore, a benchmark from the NEA for a small 3D FBR in hexagonal-Z geometry and 4 energy groups is also employed to verify the behavior of the code with few energy groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gamma detectors based on monolithic scintillator blocks coupled to APDs matrices have proved to be a good alternative to pixelated ones for PET scanners. They provide comparable spatial resolution, improve the sensitivity and make easier the mechanical design of the system. In this study we evaluate by means of Geant4-based simulations the possibility of replacing the APDs by SiPMs. Several commercial matrices of light sensors coupled to LYSO:Ce monolithic blocks have been simulated and compared. Regarding the spatial resolution and linearity of the detector, SiPMs with high photo detection efficiency could become an advantageous replacement for the APDs

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have analyzed the performance of a PET demonstrator formed by two sectors of four monolithic detector blocks placed face-to-face. Both front-end and read-out electronics have been evaluated by means of coincidence measurements using a rotating 22Na source placed at the center of the sectors in order to emulate the behavior of a complete full ring. A continuous training method based on neural network (NN) algorithms has been carried out to determine the entrance points over the surface of the detectors. Reconstructed images from 1 MBq 22Na point source and 22Na Derenzo phantom have been obtained using both filtered back projection (FBP) analytic methods and the OSEM 3D iterative algorithm available in the STIR software package [1]. Preliminary data on image reconstruction from a 22Na point source with Ø = 0.25 mm show spatial resolutions from 1.7 to 2.1 mm FWHM in the transverse plane. The results confirm the viability of this design for the development of a full-ring brain PET scanner compatible with magnetic resonance imaging for human studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A small Positron Emission Tomography demonstrator based on LYSO slabs and Silicon Photomultiplier matrices is under construction at the University and INFN of Pisa. In this paper we present the characterization results of the read-out electronics and of the detection system. Two SiPM matrices, composed by 8 × 8 SiPM pixels, 1.5 mm pitch, have been coupled one to one to a LYSO crystals array. Custom Front-End ASICs were used to read the 64 channels of each matrix. Data from each Front-End were multiplexed and sent to a DAQ board for the digital conversion; a motherboard collects the data and communicates with a host computer through a USB port. Specific tests were carried out on the system in order to assess its performance. Futhermore we have measured some of the most important parameters of the system for PET application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have developed a new projector model specifically tailored for fast list-mode tomographic reconstructions in Positron emission tomography (PET) scanners with parallel planar detectors. The model provides an accurate estimation of the probability distribution of coincidence events defined by pairs of scintillating crystals. This distribution is parameterized with 2D elliptical Gaussian functions defined in planes perpendicular to the main axis of the tube of response (TOR). The parameters of these Gaussian functions have been obtained by fitting Monte Carlo simulations that include positron range, acolinearity of gamma rays, as well as detector attenuation and scatter effects. The proposed model has been applied efficiently to list-mode reconstruction algorithms. Evaluation with Monte Carlo simulations over a rotating high resolution PET scanner indicates that this model allows to obtain better recovery to noise ratio in OSEM (ordered-subsets, expectation-maximization) reconstruction, if compared to list-mode reconstruction with symmetric circular Gaussian TOR model, and histogram-based OSEM with precalculated system matrix using Monte Carlo simulated models and symmetries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents solutions of the NURISP VVER lattice benchmark using APOLLO2, TRIPOLI4 and COBAYA3 pin-by-pin. The main objective is to validate MOC based calculation schemes for pin-by-pin cross-section generation with APOLLO2 against TRIPOLI4 reference results. A specific objective is to test the APOLLO2 generated cross-sections and interface discontinuity factors in COBAYA3 pin-by-pin calculations with unstructured mesh. The VVER-1000 core consists of large hexagonal assemblies with 2mm inter-assembly water gaps which require the use of unstructured meshes in the pin-by-pin core simulators. The considered 2D benchmark problems include 19-pin clusters, fuel assemblies and 7-assembly clusters. APOLLO2 calculation schemes with the step characteristic method (MOC) and the higher-order Linear Surface MOC have been tested. The comparison of APOLLO2 vs.TRIPOLI4 results shows a very close agreement. The 3D lattice solver in COBAYA3 uses transport corrected multi-group diffusion approximation with interface discontinuity factors of GET or Black Box Homogenization type. The COBAYA3 pin-by-pin results in 2, 4 and 8 energy groups are close to the reference solutions when using side-dependent interface discontinuity factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SRAM-based FPGAs are in-field reconfigurable an unlimited number of times. This characteristic, together with their high performance and high logic density, proves to be very convenient for a number of ground and space level applications. One drawback of this technology is that it is susceptible to ionizing radiation, and this sensitivity increases with technology scaling. This is a first order concern for applications in harsh radiation environments, and starts to be a concern for high reliability ground applications. Several techniques exist for coping with radiation effects at user application. In order to be effective they need to be complemented with configuration memory scrubbing, which allows error mitigation and prevents failures due to error accumulation. Depending on the radiation environment and on the system dependability requirements, the configuration scrubber design can become more or less complex. This paper classifies and presents current and novel design methodologies and architectures for SRAM-based FPGAs, and in particular for Xilinx Virtex-4QV/5QV, configuration memory scrubbers.