967 resultados para Nuclear energy.
Resumo:
This paper investigates the effect of the burnup coupling scheme on the numerical stability and accuracy of coupled Monte-Carlo depletion calculations. We show that in some cases, even the Predictor Corrector method with relatively short time steps can be numerically unstable. In addition, we present two possible extensions to the Euler predictor-corrector (PC) method, which is typically used in coupled burnup calculations. These modifications allow using longer time steps, while maintaining numerical stability and accuracy. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
DYN3D reactor dynamics nodal diffusion code was originally developed for the analysis of Light Water Reactors. In this paper, we demonstrate the feasibility of using DYN3D for modeling of fast spectrum reactors. A homogenized cross sections data library was generated using continuous energy Monte-Carlo code Serpent which provides significant modeling flexibility compared with traditional deterministic lattice transport codes and tolerable execution time. A representative sodium cooled fast reactor core was modeled with the Serpent-DYN3D code sequence and the results were compared with those produced by ERANOS code and with a 3D full core Monte-Carlo solution. Very good agreement between the codes was observed for the core integral parameters and power distribution suggesting that the DYN3D code with cross section library generated using Serpent can be reliably used for the analysis of fast reactors. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Monte Carlo burnup codes use various schemes to solve the coupled criticality and burnup equations. Previous studies have shown that the simplest methods, such as the beginning-of-step and middle-of-step constant flux approximations, are numerically unstable in fuel cycle calculations of critical reactors. Here we show that even the predictor-corrector methods that are implemented in established Monte Carlo burnup codes can be numerically unstable in cycle calculations of large systems. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper discusses the use of 241Am as proliferation resistant burnable poison for light water reactors. Homogeneous addition of small (as little as 0.12%) amounts of 241Am to the conventional light water reactor fuel results in significant increase in 238Pu/Pu ratio in the discharged fuel improving its proliferation resistance. Moreover, 241Am, admixed to the fuel, acts as burnable absorber allowing for substantial reduction in conventional reactivity control means without a notable fuel cycle length penalty. This is possible due to favorable characteristics of 241Am transmutation chain. The fuel cycle length penalty of introducing 241Am into the core is evaluated and discussed, as well as the impact of He production in the fuel pins and degradation of reactivity feedback coefficients. Proliferation resistance and reactivity control features related to the use of 241Am are compared to those of using 237Np, which has also been suggested as an additive to the conventional fuel in order to improve its proliferation resistance. It was found that 241Am admixture is more favorable than 237Np admixture because of the smaller fuel cycle length penalty and higher burnable poison savings. Addition of either 237Np or 241Am would provide substantial but not ultimate protection from misuse of Pu originating in the spent fuel from the commercial power reactors. Therefore, the benefits from application of the concept would have to be carefully evaluated against the additional costs and proliferation risks associated with manufacturing of 237Np or 241Am doped fuel. Although this work concerns specifically with PWRs, the conclusions could also be applied to BWRs and, to some extent, to other thermal spectrum reactor types. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
This scoping study proposes using mixed nitride fuel in Pu-based high conversion LWR designs in order to increase the breeding ratio. The higher density fuel reduces the hydrogen-to-heavy metal ratio in the reactor which results in a harder spectrum in which breeding is more effective. A Resource-renewable Boiling Water Reactor (RBWR) assembly was modeled in MCNP to demonstrate this effect in a typical high conversion LWR design. It was determined that changing the fuel from (U,TRU)O2 to (U,TRU)N in the assembly can increase its fissile inventory ratio (fissile Pu mass divided by initial fissile Pu mass) from 1.04 to up to 1.17. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
Nowadays nuclear is the only greenhouse-free source that can appreciably respond to the increasing worldwide energy demand. The use of Thorium in the nuclear energy production may offer some advantages to accomplish this task. Extensive R&D on the thorium fuel cycle has been conducted in many countries around the world. Starting from the current nuclear waste policy, the EU-PUMA project focuses on the potential benefits of using the HTR core as a Pu/MA transmuter. In this paper the following aspects have been analysed: (1) the state-of-the-art of the studies on the use of Th in different reactors, (2) the use of Th in HTRs, with a particular emphasis on Th-Pu fuel cycles, (3) an original assessment of Th-Pu fuel cycles in HTR. Some aspects related to Thorium exploitation were outlined, particularly its suitability for working in pebble-bed HTR in a Th-Pu fuel cycle. The influence of the Th/Pu weight fraction at BOC in a typical HTR pebble was analysed as far as the reactivity trend versus burn-up, the energy produced per Pu mass, and the Pu isotopic composition at EOC are concerned. Although deeper investigations need to be performed in order to draw final conclusions, it is possible to state that some optimized Th percentage in the initial Pu/Th fuel could be suggested on the basis of the aim we are trying to reach. Copyright © 2009 Guido Mazzini et al.
Resumo:
Existing Monte Carlo burnup codes use various schemes to solve the coupled criticality and burnup equations. Previous studies have shown that the coupling schemes of the existing Monte Carlo burnup codes can be numerically unstable. Here we develop the Stochastic Implicit Euler method - a stable and efficient new coupling scheme. The implicit solution is obtained by the stochastic approximation at each time step. Our test calculations demonstrate that the Stochastic Implicit Euler method can provide an accurate solution to problems where the methods in the existing Monte Carlo burnup codes fail. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
High conversion LWRs concepts typically rely on a heterogeneous core configuration, where fissile zones are interspersed with fertile blanket zones in order to achieve a high conversion ratio. Modeling such a heterogeneous structure of these cores represents a significant challenge to the conventional reactor analysis methods. It was recently suggested to overcome such difficulties, in particular, for the case of axially heterogeneous reduced moderation BWRs, by introducing an additional set of discontinuity factors in axial direction at the interfaces between fissile and fertile fuel assembly zones. However, none of the existing nodal diffusion core simulators have the capability of accounting for discontinuity of homogeneous nodal fluxes in axial direction since the fuel composition of conventional LWRs is much more axially uniform. In this work, we modified the nodal diffusion code DYN3D by introducing such a capability. The new version of the code was tested on a series of reduced moderation BWR cases with Th-U233 and U-Pu-MA fuel. The library of few-group homogenized cross sections and the data required for the calculation of discontinuity factors were generated using the Monte Carlo transport code Serpent. The results obtained with the modified version of DYN3D were compared with the reference Monte Carlo solutions and were found to be in good agreement. The current analysis demonstrates that high conversion LWRs can in principle be modeled using existing nodal diffusion core simulators. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The vibration behavior of piled foundations is an important consideration in fields such as earthquake engineering, construction, machine-foundation design, offshore structures, nuclear energy, and road and rail development. This paper presents a review of the past 40 years' literature on modeling the frequency-dependent behavior of pile foundations. Beginning with the earliest model of a single pile, adapted from those for embedded footings, it charts the development of the four pile-modeling techniques: the "dynamic Winkler-foundation" approach that uses springs to represent the effect of the soil; elasticcontinuum-type formulations involving the analytical solutions for displacements due to a subsurface disk, cylinder, or other element; boundary element methods; and dynamic finite-element formulations with special nonreflecting boundaries. The modeling of pile groups involves accounting for pile-soil-pile interactions, and four such methods exist: interaction factors; complete pile models; the equivalent pier method; and periodic structure theory. Approaches for validating pile models are also explored. Copyright © 2013 by ASME.