946 resultados para Northwest
Resumo:
Micropaleontological analysis of the Barrow Group of Sites 762 and 763 has been undertaken with a view to determining the stratigraphic age and depositional environment of the unit. The stratigraphic age of the unit is Berriasian-Valanginian at both sites, in line with palynological findings. The unit is interpreted as having been deposited in a marine deltaic environment. Paleobathymetry at Site 763 (proximal) and Site 762 (distal) is interpreted as having been of the order of 100 m and 200-500 m, respectively. Paleontological evidence for the presence of deep-water submarine fans at Site 763 is lacking. The paleobathymetric significance of the observed variations in the benthic foraminiferal populations at Site 763 remains unclear.
Resumo:
Sannai-Maruyama is one of the most famous and best-researched mid-Holocene (mid-Jomon) archaeological sites in Japan, because of a large community of people for a long period. Archaeological studies have shown that the Jomon people inhabited the Sannai-Maruyama site from 5.9-4.2 +/- 0.1 cal. kyr B.P. However, a continuous record of the terrestrial and marine environments around the site has not been available. Core KT05-7 PC-02, was recovered from Mutsu Bay, only 20 km from the site, for the reconstruction of high-resolution time series of environmental records, including sea surface temperature (SST). C37 alkenone SSTs showed clear fluctuations, with four periods of high (8.4-7.9, 7.0-5.9, 5.1-4.1, and 2.3-1.4 cal. kyr B.P.) and four of low (-8.4, 7.9-7.0, 5.9-5.1, and 4.1-2.3 cal. kyr B.P.) SST. Thus, each SST cycle lasted 1.0-2.0 kyr, and the amplitude of fluctuation was about 1.5-2.0 °C. Total organic carbon (TOC) and C37 alkenone contents, and the TOC/total nitrogen ratio indicate that marine biogenic production was low before 7.0 cal. kyr B.P., but was clearly increased between 5.9 and 4.0 cal. kyr B.P., because of stronger vertical mixing. During the period when the community at the site prospered (between 5.9 and 4.2 +/- 0.1 cal. kyr B.P.), the terrestrial climate was relatively warm. The high relative abundance of pollen of both Castanea and Quercus subgen. Cyclobalanopsis supports the interpretation that the local climate was optimal for human habitation. Between 5.9 and 5.1 cal. kyr B.P., in spite of warm terrestrial climates, the C37 alkenone SST was low; this apparent discrepancy may be attributed to the water column structure in the Tsugaru Strait, which differed from the modern condition. The evidence suggests that at about 5.9 cal. kyr B.P, high productivity of marine resources such as fish and shellfish and a warm terrestrial climate led to the establishment of a human community at the Sannai-Maruyama site. Then, at about 4.1 +/- 0.1 cal. kyr B.P., abrupt marine and terrestrial cooling, indicated by a decrease of about 2 °C in the C37 alkenone SST and an increase in pollen of taxa of cooler climates, led to a reduced terrestrial food supply, causing the people to abandon the site. The timing of the abandonment is consistent with the timing (around 4.0-4.3 cal. kyr B.P.) of the decline of civilizations in north Mesopotamia and along the Yangtze River. These findings suggest that a temperature rise of ~2 °C in this century as a result of global warming could have a great impact on the human community and especially on agriculture, despite the advances of contemporary society.
Resumo:
High-resolution quantitative diatom data are tabulated for the early part of the late Pliocene ( 3.25 to 2.08 Ma ) at DSDP Site 580 in the northwestern Pacific. Sample spacing averages 11 k.y. between 3.1 and 2.8 Ma, but increases to 14 to 19 k.y. prior to 3.1 Ma and after 2.8 Ma. Q-mode factor analysis of the middle Pliocene assemblage reveals four factors which explain 92.4% of the total variance of the 47 samples studied between 3.25 and 2.55 Ma. Three of the factors are closely related to modern subarctic, transitional, and subtropical elements, while the fourth factor, which is dominated by Coscinodiscus marginatus and the extinct Pliocene species Neodenticula kamtschatica, appears to correspond to a middle Pliocene precursor of the subarctic water mass. Knowledge of the modern and generalized Pliocene paleoclimatic relationships of various diatom taxa is used to generate a paleoclimate curve ("Twt") based on the ratio of warm-water (subtropical) to cold-water diatoms with warm-water transitional taxa (Thalassionema nitzschioides, Thalassiosira oestrupii, and Coscinodiscus radiatus) factored into the equation at an intermediate (0.5) value. The "Twt" ratios at more southerly DSDP Sites 579 and 578 are consistently higher (warmer) than those at Site 580 throughout the Pliocene, suggesting the validity of the ratio as a paleoclimatic index. Diatom paleoclimatic data reveal a middle Pliocene (3.1 to 3.0 Ma) warm interval at Site 580 during which paleotemperatures may have exceeded maximum Holocene values by 3 °- 5.5 °C at least three times. This middle Pliocene warm interval is also recognized by planktic foraminifers in the North Atlantic, and it appears to correspond with generalized depleted oxygen isotope values suggesting polar warming. The diatom "Twt" curve for Site 580 compares fairly well with radiolarian and silicoflagellate paleoclimatic curves for Site 580, planktic foraminiferal sea-surface temperature estimates for the North Atlantic, and benthic oxygen isotope curves for late Pliocene, although higher resolution studies on paired samples are required to test the correspondence of these various paleoclimatic indices.
Resumo:
During the 'Meteor' expedition SUBTROPEX '82, sediment samples were taken at 14 stations in different water depths at 35, 29, 25, 21 and 17 °N, and measurements of bacterial biomasses and activities were carried out in these different upwelling-intensity areas. Highest densities and biomasses by AODC (2.2 x 10**8 cells, corresponding to 14.8 µg C/g sediment dry wt) were recorded at 21 °N, year-round upwelling, at 1200 and 800 m, but at 500 m biomass was still 4.3 µg C/g dry wt. Relatively high densities and biomasses (6.5 and 6.8 µg C/g dry wt) were found at 17 °N, upwelling mostly in winter and spring, at 1200 and 800 m. AODC were 2 to 3 orders of magnitude higher than viable counts, incubation at 2 or 20 °C. For deep-water sediments, counts at 2 °C were higher than at 20 °C. Biomass and ATP concentrations were highest in the 0 to 2 cm sediment layers; they decreased with sediment depth. Bacterial biomasses were correlated with organic carbon and ATP concentrations. The fractions of Bacterial ATP were calculated to be 2 to 24% of ATP-biomass. On the basis of organic carbon, however, fractions of Bacterial Organic Carbon were only 0.02 to 0.06%. For microbial communities, the conversion factor 0.004 for BOC to BATP seems 2 orders of magnitude too high. Maximum AEC ratios of 0.53 to 0.70 were found at 21 and 17 °N; the other stations had AEC ratios of 0.21 to 0.47. Numbers of bacteria with respiratory ETS were between 0.5 and 10.5 % of AODC. An exception was the shelf station at 35 °N with 34.2% of AODC.
Resumo:
This paper documents the evolutionary history of Cycladophora davisiana Ehrenberg from an uppermost Miocene to Pleistocene sedimentary record in the high-latitude Northwest Pacific. It apparently evolved from C. sakaii Motoyama through a series of intermediates. C. sakaii has a relatively large shell with an external spongy layer. The evolutionary transition is characterized by a relatively rapid decrease in thorax size with a reduction of the spongy appendage. This change occurred during about 0.4 m.y. from 2.8 to 2.4 Ma without cladogenesis. Following this interval, a decrease in thorax size continued gradually up to the Recent, resulting in a very small morphology. Although the population of C. davisiana first appeared at about 2.5 Ma, some morphotypic specimens may occur in earlier periods as indistinguishable very small endmembers in the C. sakaii populations. Timing of the first appearance events both of morphotypic specimens and of a population of C. davisiana in Site 192 and previously reported cores does not disprove the idea that C. davisiana evolved first in the Northwest Pacific region, and later migrated into other regions of the world ocean. Biometrics clearly indicate no direct phylogenetic relationships between C. davisiana and C. cornutoides Kling in the studied core. Thus, the latter species, which was originally described as a variation and later elevated to a subspecies of the former species, is separated from the former species and raised to the species rank.
Resumo:
Diatom abundance and species composition were quantitatively studied in two latest Quaternary (~130 ka to the Present) sequences from the continental margin of northwest Africa. Off this region, coastal upwelling is well developed under the influence of the NE trade winds. Variations in diatom abundance in these cores are inferred to represent changes caused by varying degrees of the upwelling fertility. Times of high productivity are marked by high relative frequencies of Chaetoceros, while low productivity is marked by the dominance of Aulacoseira granulata. Upwelling increased during glacial episodes (isotopic stages 2-4 and 6) relative to isotopic stages 1 and 5. During the late Holocene, primary productivity levels are similar to those for Stage 5, but in the early Holocene upwelling intensities seem to have been weaker than today. The paleoproductivity reconstruction based on the diatom record is supported by paleoproductivity estimations based on the organic carbon content of the sediments (Sarnthein et al., 1987).
Resumo:
Thick sections of Pliocene and Pleistocene biosiliceous clay and ooze were recovered by the Hydraulic Piston Corer (I-IPC) at three northwest Pacific sites (DSDP Sites 578, 579, and 580). They contain a well-preserved paleomagnetic record which made it possible to evaluate diatom events used in low and high latitudes in the transitional region of the northwest Pacific. Equatorial Pacific events are usually isochronons between the equatorial and subarctic regions. However, species which have short ranges in low latitudes tend to have diachronous first and last appearances in higher latitudes. All subarctic North Pacific datum species are present in the sediments at three sites which lie north and south across the subarctic front, but their ranges become shorter in southern regions. They do not penetrate into the equatorial region. Spatial distributions of these events are influenced by the paleo-position of the subarctic front. The migration of species from their home-area outwards, in the form of the first appearance, is related to the fluctuations of the subarctic front. The last appearance of species is a response to the change of the surface water temperature that is beyond the limit of tolerance of the species, or an unstable oceanic environment due to major change of climate.