977 resultados para Non-conventional basins
Resumo:
Background and objective: Prescribers in rural and remote locations perceive that there are different influences on their prescribing compared with those experienced by urban prescribers. The aim of this study was to compare the motivations and perceived influences on general practitioners (GPs) when prescribing COX-2 inhibitors rather than conventional non-steroidal anti-inflammatory drugs (NSAIDs) between rural and urban-based GPs in Queensland, Australia. Methods: A questionnaire was administered to two geographically distinct groups of GPs, one urban (n = 67) and one rural (n = 67), investigating the reasons that the GP would prescribe a COX-2 inhibitor rather than a conventional NSAID or vice versa and also focusing on patients requesting a prescription for a COX-2 inhibitor. Results and discussion: A 51% response rate (n = 68) was achieved. The difference between the rural and the urban GPs was that the urban GPs were more likely to perceive that they were influenced to prescribe COX-2 inhibitors by their patients' knowledge of these new (at the time) drugs. GPs in both the rural and urban areas perceived the COX-2 selective inhibitors to be safer than conventional NSAIDs, and that there was little difference in terms of efficacy between the two drug classes. However, GPs from both of the study areas stated that conventional NSAIDs were preferred over COX-2 selective inhibitors, primarily due to their expense, if their patients were not at risk for developing a GI bleed. Conclusion: The motivations and perceived influences to prescribe a COX-2 inhibitor in rural and in urban areas of Queensland, Australia were very similar. Almost all surveyed GPs in rural and urban areas had patients request a prescription, or enquire about the COX-2 inhibitors. Urban GPs were more likely to feel pressured to prescribe a COX-2 inhibitor than their rural counterparts, agreeing with other research which found that patient pressure to prescribe appears to be greater in urban general practice.
Resumo:
BACKGROUND: Prostate cancer might have high radiation-fraction sensitivity that would give a therapeutic advantage to hypofractionated treatment. We present a pre-planned analysis of the efficacy and side-effects of a randomised trial comparing conventional and hypofractionated radiotherapy after 5 years follow-up.
METHODS: CHHiP is a randomised, phase 3, non-inferiority trial that recruited men with localised prostate cancer (pT1b-T3aN0M0). Patients were randomly assigned (1:1:1) to conventional (74 Gy delivered in 37 fractions over 7·4 weeks) or one of two hypofractionated schedules (60 Gy in 20 fractions over 4 weeks or 57 Gy in 19 fractions over 3·8 weeks) all delivered with intensity-modulated techniques. Most patients were given radiotherapy with 3-6 months of neoadjuvant and concurrent androgen suppression. Randomisation was by computer-generated random permuted blocks, stratified by National Comprehensive Cancer Network (NCCN) risk group and radiotherapy treatment centre, and treatment allocation was not masked. The primary endpoint was time to biochemical or clinical failure; the critical hazard ratio (HR) for non-inferiority was 1·208. Analysis was by intention to treat. Long-term follow-up continues. The CHHiP trial is registered as an International Standard Randomised Controlled Trial, number ISRCTN97182923.
FINDINGS: Between Oct 18, 2002, and June 17, 2011, 3216 men were enrolled from 71 centres and randomly assigned (74 Gy group, 1065 patients; 60 Gy group, 1074 patients; 57 Gy group, 1077 patients). Median follow-up was 62·4 months (IQR 53·9-77·0). The proportion of patients who were biochemical or clinical failure free at 5 years was 88·3% (95% CI 86·0-90·2) in the 74 Gy group, 90·6% (88·5-92·3) in the 60 Gy group, and 85·9% (83·4-88·0) in the 57 Gy group. 60 Gy was non-inferior to 74 Gy (HR 0·84 [90% CI 0·68-1·03], pNI=0·0018) but non-inferiority could not be claimed for 57 Gy compared with 74 Gy (HR 1·20 [0·99-1·46], pNI=0·48). Long-term side-effects were similar in the hypofractionated groups compared with the conventional group. There were no significant differences in either the proportion or cumulative incidence of side-effects 5 years after treatment using three clinician-reported as well as patient-reported outcome measures. The estimated cumulative 5 year incidence of Radiation Therapy Oncology Group (RTOG) grade 2 or worse bowel and bladder adverse events was 13·7% (111 events) and 9·1% (66 events) in the 74 Gy group, 11·9% (105 events) and 11·7% (88 events) in the 60 Gy group, 11·3% (95 events) and 6·6% (57 events) in the 57 Gy group, respectively. No treatment-related deaths were reported.
INTERPRETATION: Hypofractionated radiotherapy using 60 Gy in 20 fractions is non-inferior to conventional fractionation using 74 Gy in 37 fractions and is recommended as a new standard of care for external-beam radiotherapy of localised prostate cancer.
FUNDING: Cancer Research UK, Department of Health, and the National Institute for Health Research Cancer Research Network.
Resumo:
The aims of this study were to demonstrate the synthesis of an experimental glass ionomer cement (GIC) by the non-hydrolytic sol-gel method and to evaluate its biocompatibility in comparison to a conventional glass ionomer cement (Vidrion R). Four polyethylene tubes containing the tested cements were implanted in the dorsal region of 15 rats, as follows: GI - experimental GIC and GII - conventional GIC. The external tube walls was considered the control group (CG). The rats were sacrificed 7, 21 and 42 days after implant placement for histopathological analysis. A four-point (I-IV) scoring system was used to graduate the inflammatory reaction. Regarding the experimental GIC sintherization, thermogravimetric and x-ray diffraction analysis demonstrated vitreous material formation at 110oC by the sol-gel method. For biocompatibility test, results showed a moderate chronic inflammatory reaction for GI (III), severe for GII (IV) and mild for CG (II) at 7 days. After 21 days, GI presented a mild reaction (II); GII, moderate (III) and CG, mild (II). At 42 days, GI showed a mild/absent inflammatory reaction (II to I), similar to GII (II to I). CG presented absence of chronic inflammatory reaction (I). It was concluded that the experimental GIC presented mild/absent tissue reaction after 42 days, being biocompatible when tested in the connective tissue of rats.
Resumo:
Pathogen detection in foods by reliable methodologies is very important to guarantee microbilogical safety. However, peculiar characteristics of certain foods, such as autochthonous microbiota, can directly influence pathogen development and detection. With the objective of verifying the performance of the official analytical methodologies for the isolation of Listeria monocytogenes and Salmonella in milk, different concentrations of these pathogens were inoculated in raw milk treatments with different levels of mesophilic aerobes, and then submitted to the traditional isolation procedures for the inoculated pathogens. Listeria monocytogenes was inoculated at the range of 0.2-5.2 log CFU/mL in treatments with 1.8-8.2 log CFU/mL. Salmonella Enteritidis was inoculated at 0.9-3.9 log CFU/mL in treatments with 3.0-8.2 log CFU/mL. The results indicated that recovery was not possible or was more difficult in the treatments with high counts of mesophilic aerobes and low levels of the pathogens, indicating interference of raw milk autochthonous microbiota. This interference was more evident for L. monocytogenes, once the pathogen recovery was not possible in treatments with mesophilic aerobes up to 4.0 log CFU/mL and inoculum under 2.0 log CFU/mL. For S. Enteritidis the interference appeared to be more non-specific. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
The Equilibrium Flux Method [1] is a kinetic theory based finite volume method for calculating the flow of a compressible ideal gas. It is shown here that, in effect, the method solves the Euler equations with added pseudo-dissipative terms and that it is a natural upwinding scheme. The method can be easily modified so that the flow of a chemically reacting gas mixture can be calculated. Results from the method for a one-dimensional non-equilibrium reacting flow are shown to agree well with a conventional continuum solution. Results are also presented for the calculation of a plane two-dimensional flow, at hypersonic speed, of a dissociating gas around a blunt-nosed body.
Resumo:
In order to use the finite element method for solving fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins effectively and efficiently, we have presented, in this paper, the new concept and numerical algorithms to deal with the fundamental issues associated with the fluid-rock interaction problems. These fundamental issues are often overlooked by some purely numerical modelers. (1) Since the fluid-rock interaction problem involves heterogeneous chemical reactions between reactive aqueous chemical species in the pore-fluid and solid minerals in the rock masses, it is necessary to develop the new concept of the generalized concentration of a solid mineral, so that two types of reactive mass transport equations, namely, the conventional mass transport equation for the aqueous chemical species in the pore-fluid and the degenerated mass transport equation for the solid minerals in the rock mass, can be solved simultaneously in computation. (2) Since the reaction area between the pore-fluid and mineral surfaces is basically a function of the generalized concentration of the solid mineral, there is a definite need to appropriately consider the dependence of the dissolution rate of a dissolving mineral on its generalized concentration in the numerical analysis. (3) Considering the direct consequence of the porosity evolution with time in the transient analysis of fluid-rock interaction problems; we have proposed the term splitting algorithm and the concept of the equivalent source/sink terms in mass transport equations so that the problem of variable mesh Peclet number and Courant number has been successfully converted into the problem of constant mesh Peclet and Courant numbers. The numerical results from an application example have demonstrated the usefulness of the proposed concepts and the robustness of the proposed numerical algorithms in dealing with fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Background/Aims: The aim of this study is to compare the splanchnic non-hepatic hemodynamics and the metabolic changes during orthotopic liver transplantation between the conventional with bypass and the piggyback methods. Methodology: A prospective, consecutive series of 59 primary transplants were analyzed. Oxygen consumption, glucose, potassium, and lactate metabolism were quantitatively estimated from blood samples from the radial artery and portal vein, collected up to 120 minutes after graft reperfusion. Mean arterial pressure, portal venous pressure, portal venous blood flow, and splanchnic vascular resistance were also measured or calculated at postreperfusion collection times. Results: There was a greater increase in portal venous blood flow (p=0.05) and lower splanchnic vascular resistance (p=0.04) in the piggyback group. Mean arterial pressure and portal venous pressure were similar for both groups. Oxygen, glucose and potassium consumption were higher in the piggyback group, but none of the metabolic parameters differed significantly between groups. Conclusions: In conclusion, the study detected a higher portal venous blood flow and a lower and splanchnic vascular resistance associated with the piggyback technique. After graft reperfusion, no difference in the splanchnic non-hepatic metabolic parameters was observed between the conventional with bypass and the piggyback methods of orthotopic liver transplantation.
Resumo:
Rehospitalization is an important outcome of drug effectiveness in schizophrenia. In this study, the hypothesis that clozapine and some second generation antipsychotics (SGA) were superior to first generation antipsychotics (FGA) in preventing rehospitalization of patients with schizophrenia discharged from a university hospital in Brazil was tested. A retrospective observational study was conducted designed to evaluate time to rehospitalization of patients with schizophrenia discharged on a regimen of oral FGA, depot FGA, risperidone, olanzapine and amisulpride, other SGA, or clozapine, during a three-year follow-up period. Risk factors associated with rehospitalization were examined. Of the 464 patients with schizophrenia discharged from hospital, 242 met criteria for study entry. Higher rehospitalization rates were observed in patients treated with depot FGA (30%), risperidone (30%) and other SGA groups (28.5%), respectively. Clozapine was significantly associated with lower rehospitalization risk compared with risperidone. The risk of rehospitalization in patients on olanzapine and amisulpride, and oral FGA, was similar to that of patients in use of clozapine. These results however, are limited by the heterogeneity of illness severity across the groups. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Field quantization in unstable optical systems is treated by expanding the vector potential in terms of non-Hermitean (Fox-Li) modes. We define non-Hermitean modes and their adjoints in both the cavity and external regions and make use of the important bi-orthogonality relationships that exist within each mode set. We employ a standard canonical quantization procedure involving the introduction of generalized coordinates and momenta for the electromagnetic (EM) field. Three-dimensional systems are treated, making use of the paraxial and monochromaticity approximations for the cavity non-Hermitean modes. We show that the quantum EM field is equivalent to a set of quantum harmonic oscillators (QHOs), associated with either the cavity or the external region non-Hermitean modes, and thus confirming the validity of the photon model in unstable optical systems. Unlike in the conventional (Hermitean mode) case, the annihilation and creation operators we define for each QHO are not Hermitean adjoints. It is shown that the quantum Hamiltonian for the EM field is the sum of non-commuting cavity and external region contributions, each of which can be expressed as a sum of independent QHO Hamiltonians for each non-Hermitean mode, except that the external field Hamiltonian also includes a coupling term responsible for external non-Hermitean mode photon exchange processes. The non-commutativity of certain cavity and external region annihilation and creation operators is associated with cavity energy gain and loss processes, and may be described in terms of surface integrals involving cavity and external region non-Hermitean mode functions on the cavity-external region boundary. Using the essential states approach and the rotating wave approximation, our results are applied to the spontaneous decay of a two-level atom inside an unstable cavity. We find that atomic transitions leading to cavity non-Hermitean mode photon absorption are associated with a different coupling constant to that for transitions leading to photon emission, a feature consequent on the use of non-Hermitean mode functions. We show that under certain conditions the spontaneous decay rate is enhanced by the Petermann factor.
Resumo:
The utility of 16s rDNA restriction fragment length polymorphism (RFLP) analysis for the partial genomovar differentiation of Burkholderia cepacia complex bacterium is well documented. We compared the 16s rDNA RFLP signatures for a number of non-fermenting gram negative bacilli (NF GNB) LMG control strains and clinical isolates pertaining to the genera Burkholderia, Pseudomonas, Achromobacter (Alcaligenes), Ralstonia, Stenotrophomonas and Pandoraea. A collection of 24 control strain (LMG) and 25 clinical isolates were included in the study. Using conventional PCR, a 1.2 kbp 16s rDNA fragment was generated for each organism. Following restriction digestion and electrophoresis, each clinical isolate RFLP signature was compared to those of the control strain panel. Nineteen different RFLP signatures were detected from the 28 control strains included in the study. TwentyoneyTwenty- five of the clinical isolates could be classified by RFLP analysis into a single genus and species when compared to the patterns produced by the control strain panel. Four clinical B. pseudomallei isolates produced RFLP signatures which were indistinguishable from B. cepacia genomovars I, III and VIII. The identity of these four isolates were confirmed using B. pseudomallei specific PCR. 16s rDNA RFLP analysis can be a useful identification strategy when applied to NF GNB, particularly for those which exhibit colistin sulfate resistance. The use of this molecular based methodology has proved very useful in the setting of a CF referral laboratory particularly when utilised in conjunction with B. cepacia complex and genomovar specific PCR techniques. Species specific PCR or sequence analysis should be considered for selected isolates; especially where discrepancies between epidemiology, phenotypic and genotypic characteristics occur.
The use of non-standard CT conversion ramps for Monte Carlo verification of 6 MV prostate IMRT plans
Resumo:
Monte Carlo (MC) dose calculation algorithms have been widely used to verify the accuracy of intensity-modulated radiotherapy (IMRT) dose distributions computed by conventional algorithms due to the ability to precisely account for the effects of tissue inhomogeneities and multileaf collimator characteristics. Both algorithms present, however, a particular difference in terms of dose calculation and report. Whereas dose from conventional methods is traditionally computed and reported as the water-equivalent dose (Dw), MC dose algorithms calculate and report dose to medium (Dm). In order to compare consistently both methods, the conversion of MC Dm into Dw is therefore necessary. This study aims to assess the effect of applying the conversion of MC-based Dm distributions to Dw for prostate IMRT plans generated for 6 MV photon beams. MC phantoms were created from the patient CT images using three different ramps to convert CT numbers into material and mass density: a conventional four material ramp (CTCREATE) and two simplified CT conversion ramps: (1) air and water with variable densities and (2) air and water with unit density. MC simulations were performed using the BEAMnrc code for the treatment head simulation and the DOSXYZnrc code for the patient dose calculation. The conversion of Dm to Dw by scaling with the stopping power ratios of water to medium was also performed in a post-MC calculation process. The comparison of MC dose distributions calculated in conventional and simplified (water with variable densities) phantoms showed that the effect of material composition on dose-volume histograms (DVH) was less than 1% for soft tissue and about 2.5% near and inside bone structures. The effect of material density on DVH was less than 1% for all tissues through the comparison of MC distributions performed in the two simplified phantoms considering water. Additionally, MC dose distributions were compared with the predictions from an Eclipse treatment planning system (TPS), which employed a pencil beam convolution (PBC) algorithm with Modified Batho Power Law heterogeneity correction. Eclipse PBC and MC calculations (conventional and simplified phantoms) agreed well (<1%) for soft tissues. For femoral heads, differences up to 3% were observed between the DVH for Eclipse PBC and MC calculated in conventional phantoms. The use of the CT conversion ramp of water with variable densities for MC simulations showed no dose discrepancies (0.5%) with the PBC algorithm. Moreover, converting Dm to Dw using mass stopping power ratios resulted in a significant shift (up to 6%) in the DVH for the femoral heads compared to the Eclipse PBC one. Our results show that, for prostate IMRT plans delivered with 6 MV photon beams, no conversion of MC dose from medium to water using stopping power ratio is needed. In contrast, MC dose calculations using water with variable density may be a simple way to solve the problem found using the dose conversion method based on the stopping power ratio.
Resumo:
New arguments proving that successive (repeated) measurements have a memory and actually remember each other are presented. The recognition of this peculiarity can change essentially the existing paradigm associated with conventional observation in behavior of different complex systems and lead towards the application of an intermediate model (IM). This IM can provide a very accurate fit of the measured data in terms of the Prony's decomposition. This decomposition, in turn, contains a small set of the fitting parameters relatively to the number of initial data points and allows comparing the measured data in cases where the “best fit” model based on some specific physical principles is absent. As an example, we consider two X-ray diffractometers (defined in paper as A- (“cheap”) and B- (“expensive”) that are used after their proper calibration for the measuring of the same substance (corundum a-Al2O3). The amplitude-frequency response (AFR) obtained in the frame of the Prony's decomposition can be used for comparison of the spectra recorded from (A) and (B) - X-ray diffractometers (XRDs) for calibration and other practical purposes. We prove also that the Fourier decomposition can be adapted to “ideal” experiment without memory while the Prony's decomposition corresponds to real measurement and can be fitted in the frame of the IM in this case. New statistical parameters describing the properties of experimental equipment (irrespective to their internal “filling”) are found. The suggested approach is rather general and can be used for calibration and comparison of different complex dynamical systems in practical purposes.
Resumo:
Mesoamerican cultures had a strong tradition of written and pictorial manuscripts, called the codices. In studies already performed it was found the use of Maya Blue, made from a mixture of indigo and a clay called palygorskite, forming an incredibly stable material where the dye is trapped inside the nanotubes of the clay, after heating. However, a bigger challenge lies in the study of the yellows used, for these civilizations might have used this clay-dye mixture to produce their yellow colorants. As a first step, it was possible to provide identification, by non-invasive methods, of two colorants (a flavonoid and a carotenoid). While the flavonoid absorbed between 368-379 nm, the carotenoid would absorb around 455 nm. A temperature study also conducted allowed to set 140ºC as the desirable temperature to heat the samples without degrading them. FT-IR, conventional Raman and SERS allowed us to understand the existence of a reaction between the dyes and the clays (palygorskite and kaolinite), however it is difficult to understand it in a molecular point of view. As a second step, five species of Mexican dyes were selected on the basis of historical sources. The Maya yellow samples were produced adapting the recipe proposed by Reyes-Valerio, supporting the yellow dyes extracted from the dried plants on the clays, with addition of water, and then heated at 140ºC. It was found that the addition of water in palygorskite would increase the pH, hence deprotonating the molecules having a clear negative effect in the color. A second recipe was developed, without the addition of water; however, it was found that the use of water based binders would still alter the color of the samples with palygorskite. In this case, kaolinite without heating yield better results as a Maya yellow hybrid. It was found that the Maya chemistry might not have been the same for all the colors. The Mesoamericans might have found that different dyes could work better to their desires if matched with different clays. It was noticeable that for a clear distinction between flavonoids and carotenoids the reflectance and emission studies suffice, but when clay is added, Raman techniques will perform better. For this reason, conventional Raman and SERS were employed in order to create a database for the Mesoamerican dyestuffs for a future identification.