794 resultados para Non Parametric Methodology
Resumo:
We introduce a new regression framework, Gaussian process regression networks (GPRN), which combines the structural properties of Bayesian neural networks with the non-parametric flexibility of Gaussian processes. This model accommodates input dependent signal and noise correlations between multiple response variables, input dependent length-scales and amplitudes, and heavy-tailed predictive distributions. We derive both efficient Markov chain Monte Carlo and variational Bayes inference procedures for this model. We apply GPRN as a multiple output regression and multivariate volatility model, demonstrating substantially improved performance over eight popular multiple output (multi-task) Gaussian process models and three multivariate volatility models on benchmark datasets, including a 1000 dimensional gene expression dataset.
Resumo:
We extend previous work on fully unsupervised part-of-speech tagging. Using a non-parametric version of the HMM, called the infinite HMM (iHMM), we address the problem of choosing the number of hidden states in unsupervised Markov models for PoS tagging. We experiment with two non-parametric priors, the Dirichlet and Pitman-Yor processes, on the Wall Street Journal dataset using a parallelized implementation of an iHMM inference algorithm. We evaluate the results with a variety of clustering evaluation metrics and achieve equivalent or better performances than previously reported. Building on this promising result we evaluate the output of the unsupervised PoS tagger as a direct replacement for the output of a fully supervised PoS tagger for the task of shallow parsing and compare the two evaluations. © 2009 ACL and AFNLP.
Resumo:
The objective of this study was to develop soy protein fortified fish sticks from Tilapia. Two preliminary studies were conducted to select the best fish-soy protein-spice mixture combination with four treatments to develop breaded fish sticks. Developed products were organoleptically assessed using 30 untrained panellists with 7-point hedonic scale. The product developed with new combination was compared with market product. Sixty percent of Tilapia fish mince, 12% of Defatted Textured Soy protein (DTSP), 1.6% of salt and 26.4% of ice water (<5°C) and Spice mixture containing 3g of garlic, 2g of pepper 2g of onion and 1.6g of cinnamon were selected as the best formula to manufacture the product. There was no significant difference when compared with market samples in relation to the organoleptic attributes. Proximate composition of the product was 25.76% of crude protein, 2.38% of crude fat, 60.35% of moisture and2.75% of ash. Products were packaged in Poly Vinyl Chloride clear package (12 gauge) and were stored at -1°C and changes in moisture content, peroxide value, pH value and microbiological parameters were assessed during five weeks of storage. Organoleptic acceptability was not changed significantly in all parameters tested (p>0.05). Total aerobic count and yeast and mould count were in acceptable ranges in frozen storage for 5 weeks. Data were analyzed using AN OVA and Friedman non-parametric test.
Resumo:
We propose a principled algorithm for robust Bayesian filtering and smoothing in nonlinear stochastic dynamic systems when both the transition function and the measurement function are described by non-parametric Gaussian process (GP) models. GPs are gaining increasing importance in signal processing, machine learning, robotics, and control for representing unknown system functions by posterior probability distributions. This modern way of system identification is more robust than finding point estimates of a parametric function representation. Our principled filtering/smoothing approach for GP dynamic systems is based on analytic moment matching in the context of the forward-backward algorithm. Our numerical evaluations demonstrate the robustness of the proposed approach in situations where other state-of-the-art Gaussian filters and smoothers can fail. © 2011 IEEE.
Resumo:
Simulation of materials at the atomistic level is an important tool in studying microscopic structure and processes. The atomic interactions necessary for the simulation are correctly described by Quantum Mechanics. However, the computational resources required to solve the quantum mechanical equations limits the use of Quantum Mechanics at most to a few hundreds of atoms and only to a small fraction of the available configurational space. This thesis presents the results of my research on the development of a new interatomic potential generation scheme, which we refer to as Gaussian Approximation Potentials. In our framework, the quantum mechanical potential energy surface is interpolated between a set of predetermined values at different points in atomic configurational space by a non-linear, non-parametric regression method, the Gaussian Process. To perform the fitting, we represent the atomic environments by the bispectrum, which is invariant to permutations of the atoms in the neighbourhood and to global rotations. The result is a general scheme, that allows one to generate interatomic potentials based on arbitrary quantum mechanical data. We built a series of Gaussian Approximation Potentials using data obtained from Density Functional Theory and tested the capabilities of the method. We showed that our models reproduce the quantum mechanical potential energy surface remarkably well for the group IV semiconductors, iron and gallium nitride. Our potentials, while maintaining quantum mechanical accuracy, are several orders of magnitude faster than Quantum Mechanical methods.
Resumo:
Quantile regression refers to the process of estimating the quantiles of a conditional distribution and has many important applications within econometrics and data mining, among other domains. In this paper, we show how to estimate these conditional quantile functions within a Bayes risk minimization framework using a Gaussian process prior. The resulting non-parametric probabilistic model is easy to implement and allows non-crossing quantile functions to be enforced. Moreover, it can directly be used in combination with tools and extensions of standard Gaussian Processes such as principled hyperparameter estimation, sparsification, and quantile regression with input-dependent noise rates. No existing approach enjoys all of these desirable properties. Experiments on benchmark datasets show that our method is competitive with state-of-the-art approaches. © 2009 IEEE.
Resumo:
We introduce a conceptually novel structured prediction model, GPstruct, which is kernelized, non-parametric and Bayesian, by design. We motivate the model with respect to existing approaches, among others, conditional random fields (CRFs), maximum margin Markov networks (M3N), and structured support vector machines (SVMstruct), which embody only a subset of its properties. We present an inference procedure based on Markov Chain Monte Carlo. The framework can be instantiated for a wide range of structured objects such as linear chains, trees, grids, and other general graphs. As a proof of concept, the model is benchmarked on several natural language processing tasks and a video gesture segmentation task involving a linear chain structure. We show prediction accuracies for GPstruct which are comparable to or exceeding those of CRFs and SVMstruct.
Resumo:
The prediction of time-changing variances is an important task in the modeling of financial data. Standard econometric models are often limited as they assume rigid functional relationships for the evolution of the variance. Moreover, functional parameters are usually learned by maximum likelihood, which can lead to over-fitting. To address these problems we introduce GP-Vol, a novel non-parametric model for time-changing variances based on Gaussian Processes. This new model can capture highly flexible functional relationships for the variances. Furthermore, we introduce a new online algorithm for fast inference in GP-Vol. This method is much faster than current offline inference procedures and it avoids overfitting problems by following a fully Bayesian approach. Experiments with financial data show that GP-Vol performs significantly better than current standard alternatives.
Resumo:
We investigate the Student-t process as an alternative to the Gaussian process as a non-parametric prior over functions. We derive closed form expressions for the marginal likelihood and predictive distribution of a Student-t process, by integrating away an inverse Wishart process prior over the co-variance kernel of a Gaussian process model. We show surprising equivalences between different hierarchical Gaussian process models leading to Student-t processes, and derive a new sampling scheme for the inverse Wishart process, which helps elucidate these equivalences. Overall, we show that a Student-t process can retain the attractive properties of a Gaussian process - a nonparamet-ric representation, analytic marginal and predictive distributions, and easy model selection through covariance kernels - but has enhanced flexibility, and predictive covariances that, unlike a Gaussian process, explicitly depend on the values of training observations. We verify empirically that a Student-t process is especially useful in situations where there are changes in covariance structure, or in applications such as Bayesian optimization, where accurate predictive covariances are critical for good performance. These advantages come at no additional computational cost over Gaussian processes.
Resumo:
An accurate description of atomic interactions, such as that provided by first principles quantum mechanics, is fundamental to realistic prediction of the properties that govern plasticity, fracture or crack propagation in metals. However, the computational complexity associated with modern schemes explicitly based on quantum mechanics limits their applications to systems of a few hundreds of atoms at most. This thesis investigates the application of the Gaussian Approximation Potential (GAP) scheme to atomistic modelling of tungsten - a bcc transition metal which exhibits a brittle-to-ductile transition and whose plasticity behaviour is controlled by the properties of $\frac{1}{2} \langle 111 \rangle$ screw dislocations. We apply Gaussian process regression to interpolate the quantum-mechanical (QM) potential energy surface from a set of points in atomic configuration space. Our training data is based on QM information that is computed directly using density functional theory (DFT). To perform the fitting, we represent atomic environments using a set of rotationally, permutationally and reflection invariant parameters which act as the independent variables in our equations of non-parametric, non-linear regression. We develop a protocol for generating GAP models capable of describing lattice defects in metals by building a series of interatomic potentials for tungsten. We then demonstrate that a GAP potential based on a Smooth Overlap of Atomic Positions (SOAP) covariance function provides a description of the $\frac{1}{2} \langle 111 \rangle$ screw dislocation that is in agreement with the DFT model. We use this potential to simulate the mobility of $\frac{1}{2} \langle 111 \rangle$ screw dislocations by computing the Peierls barrier and model dislocation-vacancy interactions to QM accuracy in a system containing more than 100,000 atoms.
Resumo:
Background and Aims The systematic position of the genus Metagentiana and its phylogenetic relationships with Crawfurdia, Gentiana and Tripterospermum have not been explicitly addressed. These four genera belong to one of two subtribes (Gentianinae) of Gentianeae. The aim of this paper is to examine the systematic position of Crawfurdia, Metagentiana and Tripterospermum and to clarify their phylogenetic affinities more clearly using ITS and trnL intron sequences.Methods Nucleotide sequences from the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the plastid DNA trnL (UAA) intron were analysed phylogenetically. Ten of fourteen Metagentiana species were sampled, together with 40 species of other genera in the subtribe Gentianinae.Key Results The data support several previously published conclusions relating to the separation of Metagentiana from Gentiana and its closer relationships to Crawfurdia and Tripterospermum based on studies of gross morphology, floral anatomy, chromosomes, palynology, embryology and previous molecular data. The molecular clock hypothesis for the tested sequences in subtribe Gentianinae was not supported by the data (P < 0.05), so the clock-independent non-parametric rate smoothing method was used to estimate divergence time. This indicates that the separation of Crawfurdia, Metagentiana and Tripterospermum from Gentiana occurred about 11.4-21.4 Mya (million years ago), and the current species of these three genera diverged at times ranging from 0.4 to 6.2 Mya.Conclusions The molecular analyses revealed that Crawfurdia, Metagentiana and Tripterospermum do not merit status as three separate genera, because sampled species of Crawfurdia and Tripterospermum are embedded within Metagentiana. The speciation and rapid radiation of these three genera is likely to have occurred in western China as a result of upthrust of the Himalayas during the late Miocene and the Pleistocene.
Resumo:
We introduce and explore an approach to estimating statistical significance of classification accuracy, which is particularly useful in scientific applications of machine learning where high dimensionality of the data and the small number of training examples render most standard convergence bounds too loose to yield a meaningful guarantee of the generalization ability of the classifier. Instead, we estimate statistical significance of the observed classification accuracy, or the likelihood of observing such accuracy by chance due to spurious correlations of the high-dimensional data patterns with the class labels in the given training set. We adopt permutation testing, a non-parametric technique previously developed in classical statistics for hypothesis testing in the generative setting (i.e., comparing two probability distributions). We demonstrate the method on real examples from neuroimaging studies and DNA microarray analysis and suggest a theoretical analysis of the procedure that relates the asymptotic behavior of the test to the existing convergence bounds.
Resumo:
Nearest neighbor classifiers are simple to implement, yet they can model complex non-parametric distributions, and provide state-of-the-art recognition accuracy in OCR databases. At the same time, they may be too slow for practical character recognition, especially when they rely on similarity measures that require computationally expensive pairwise alignments between characters. This paper proposes an efficient method for computing an approximate similarity score between two characters based on their exact alignment to a small number of prototypes. The proposed method is applied to both online and offline character recognition, where similarity is based on widely used and computationally expensive alignment methods, i.e., Dynamic Time Warping and the Hungarian method respectively. In both cases significant recognition speedup is obtained at the expense of only a minor increase in recognition error.
Resumo:
Background: We conducted a survival analysis of all the confirmed cases of Adult Tuberculosis (TB) patients treated in Cork-City, Ireland. The aim of this study was to estimate Survival time (ST), including median time of survival and to assess the association and impact of covariates (TB risk factors) to event status and ST. The outcome of the survival analysis is reported in this paper. Methods: We used a retrospective cohort study research design to review data of 647 bacteriologically confirmed TB patients from the medical record of two teaching hospitals. Mean age 49 years (Range 18–112). We collected information on potential risk factors of all confirmed cases of TB treated between 2008–2012. For the survival analysis, the outcome of interest was ‘treatment failure’ or ‘death’ (whichever came first). A univariate descriptive statistics analysis was conducted using a non- parametric procedure, Kaplan -Meier (KM) method to estimate overall survival (OS), while the Cox proportional hazard model was used for the multivariate analysis to determine possible association of predictor variables and to obtain adjusted hazard ratio. P value was set at <0.05, log likelihood ratio test at >0.10. Data were analysed using SPSS version 15.0. Results: There was no significant difference in the survival curves of male and female patients. (Log rank statistic = 0.194, df = 1, p = 0.66) and among different age group (Log rank statistic = 1.337, df = 3, p = 0.72). The mean overall survival (OS) was 209 days (95%CI: 92–346) while the median was 51 days (95% CI: 35.7–66). The mean ST for women was 385 days (95%CI: 76.6–694) and for men was 69 days (95%CI: 48.8–88.5). Multivariate Cox regression showed that patient who had history of drug misuse had 2.2 times hazard than those who do not have drug misuse. Smokers and alcohol drinkers had hazard of 1.8 while patients born in country of high endemicity (BICHE) had hazard of 6.3 and HIV co-infection hazard was 1.2. Conclusion: There was no significant difference in survival curves of male and female and among age group. Women had a higher ST compared to men. But men had a higher hazard rate compared to women. Anti-TNF, immunosuppressive medication and diabetes were found to be associated with longer ST, while alcohol, smoking, RICHE, BICHE was associated with shorter ST.
Resumo:
Recent evidence that echinoids of the genus Echinometra have moderate visual acuity that appears to be mediated by their spines screening off-axis light suggests that the urchin Strongylocentrotus purpuratus, with its higher spine density, may have even more acute spatial vision. We analyzed the movements of 39 specimens of S. purpuratus after they were placed in the center of a featureless tank containing a round, black target that had an angular diameter of 6.5 deg. or 10 deg. (solid angles of 0.01 sr and 0.024 sr, respectively). An average orientation vector for each urchin was determined by testing the animal four times, with the target placed successively at bearings of 0 deg., 90 deg., 180 deg. and 270 deg. (relative to magnetic east). The urchins showed no significant unimodal or axial orientation relative to any non-target feature of the environment or relative to the changing position of the 6.5 deg. target. However, the urchins were strongly axially oriented relative to the changing position of the 10 deg. target (mean axis from -1 to 179 deg.; 95% confidence interval +/- 12 deg.; P<0.001, Moore's non-parametric Hotelling's test), with 10 of the 20 urchins tested against that target choosing an average bearing within 10 deg. of either the target center or its opposite direction (two would be expected by chance). In addition, the average length of the 20 target-normalized bearings for the 10 deg. target (each the vector sum of the bearings for the four trials) were far higher than would be expected by chance (P<10(-10); Monte Carlo simulation), showing that each urchin, whether it moved towards or away from the target, did so with high consistency. These results strongly suggest that S. purpuratus detected the 10 deg. target, responding either by approaching it or fleeing it. Given that the urchins did not appear to respond to the 6.5 deg. target, it is likely that the 10 deg. target was close to the minimum detectable size for this species. Interestingly, measurements of the spine density of the regions of the test that faced horizontally predicted a similar visual resolution (8.3+/-0.5 deg. for the interambulacrum and 11+/-0.54 deg. for the ambulacrum). The function of this relatively low, but functional, acuity - on par with that of the chambered Nautilus and the horseshoe crab - is unclear but, given the bimodal response, is likely to be related to both shelter seeking and predator avoidance.