891 resultados para Nitric oxide synthase 3 polymorphisms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myxomatous mitral valve degeneration (MMVD) or endocardiosis is a heart valve disease that occurs in many mammalian species, especially in humans, dogs and pigs. Nitric oxide (NO) plays an important role in the MMVD development. NO can be indirectly evaluated by the nitric-oxide synthase (NOS) expression and by the histochemical reaction of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d). The aim of this study was to evaluate NOS activity, by NADPH-d reaction, in the anterior leaflet of dogs with regular mitral valves and in those with MMVD, as well as in young swine and old females, comparing the reaction level with the degree of endocardiosis disease and also the histological alterations. Twelve mitral valves of dogs and 22 of swine were used for the research. All the valves were macroscopically analyzed for the occurrence or not of endocardiosis. They were fixed in a 4% paraformaldehyde, exposed to NADPH-d reaction, routinely processed and microscopically evaluated for the detection of mucopolysaccharides (MPS) deposition, collagen degeneration, fibrosis and level of endocardiosis. In dogs, relation was observed between higher intensity of the NADPH-d reaction, higher endocardiosis degree, MPS deposition as well as the collagen degeneration. No alteration in color was observed in pigs ́ valves during NADPH-d reaction. In conclusion, NO works in canine mitral valve remodeling extracellular matrix and plays an important role in endocardiosis disease. In swine, the lack of reaction reinforces the absence of macroscopical endocardiosis lesions, suggesting restrict NO action or major differences in the structures of swine valves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic exercise evokes sustained cardiovascular responses, which are characterized by arterial pressure and heart rate increases. Although it is well accepted that there is central nervous system mediation of cardiovascular adjustments during exercise, information on the role of neural pathways and signaling mechanisms is limited. It has been reported that glutamate, by acting on NMDA receptors, evokes the release of nitric oxide through activation of neuronal nitric oxide synthase (nNOS) in the brain. In the present study, we tested the hypothesis that NMDA receptors and nNOS are involved in cardiovascular responses evoked by an acute bout of exercise on a rodent treadmill. Moreover, we investigated possible central sites mediating control of responses to exercise through the NMDA receptor-nitric oxide pathway. Intraperitoneal administration of the selective NMDA glutamate receptor antagonist dizocilpine maleate (MK-801) reduced both the arterial pressure and heart rate increase evoked by dynamic exercise. Intraperitoneal treatment with the preferential nNOS inhibitor 7-nitroindazole reduced exercise-evoked tachycardiac response without affecting the pressor response. Moreover, treadmill running increased NO formation in the medial prefrontal cortex (MPFC), bed nucleus of the stria teminalis (BNST) and periaqueductal gray (PAG), and this effect was inhibited by systemic pretreatment with MK-801. Our findings demonstrate that NMDA receptors and nNOS mediate the tachycardiac response to dynamic exercise, possibly through an NMDA receptor-NO signaling mechanism. However, NMDA receptors, but not nNOS, mediate the exercise-evoked pressor response. The present results also provide evidence that MPFC, BNST and PAG may modulate physiological adjustments during dynamic exercise through NMDA receptor-NO signaling. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) is produced by various mammalian cells and plays a variety of regulatory roles in normal physiology and in pathological processes. This article provides evidence regarding the participation of NO in UVB-induced skin lesions and in the modulation of skin cell proliferation following UVB skin irradiation. Hairless mice were subjected to UVB irradiation for 3 hours and the skin evaluated immediately, 6 and 24 hours postirradiation. The skin lipid peroxidation, and NO levels evaluated by chemiluminescence and inducible nitric oxide synthase (iNOS) and nitrotyrosine immunolabelling increased significantly 24 hours after irradiation and decreased under the treatment with aminoguanidine (AG). On the other hand, cell proliferation markers, PCNA and VEGF showed a strong labelling index when AG was used. The data indicate that NO mediates, at least in part, the lipid peroxidation and protein nitration and also promotes the down regulation of factors involved in cell proliferation. This work shows that the NO plays an important role in the oxidative stress damage and on modulation of cell proliferation pathways in UVB irradiated skin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crotalphine, a 14 amino acid peptide first isolated from the venom of the South American rattlesnake Crotalus durissus terrificus, induces a peripheral long-lasting and opioid receptor-mediated antinociceptive effect in a rat model of neuropathic pain induced by chronic constriction of the sciatic nerve. In the present study, we further characterized the molecular mechanisms involved in this effect, determining the type of opioid receptor responsible for this effect and the involvement of the nitric oxide-cyclic GMP pathway and of K+ channels. Crotalphine (0.2 or 5 mu g/kg, orally; 0.0006 mu g/paw), administered on day 14 after nerve constriction, inhibited mechanical hyperalgesia and low-threshold mechanical allodynia. The effect of the peptide was antagonized by intraplantar administration of naltrindole, an antagonist of delta-opioid receptors, and partially reversed by norbinaltorphimine, an antagonist of kappa-opioid receptors. The effect of crotalphine was also blocked by 7-nitroindazole, an inhibitor of the neuronal nitric oxide synthase; by 1H-(1,2,4) oxadiazolo[4,3-a]quinoxaline-1-one, an inhibitor of guanylate cyclase activation; and by glibenclamide, an ATP-sensitive K+ channel blocker. The results suggest that peripheral delta-opioid and kappa-opioid receptors, the nitric oxide-cyclic GMP pathway, and ATP-sensitive K+ channels are involved in the antinociceptive effect of crotalphine. The present data point to the therapeutic potential of this peptide for the treatment of chronic neuropathic pain. Behavioural Pharmacology 23:14-24 (C) 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prosthetic meshes are commonly used to correct abdominal wall defects. However, the inflammatory reaction induced by these devices in the peritoneum is not completely understood. We hypothesized that nitric oxide (NO), produced by nitric oxide synthase 2 (NOS2) may modulate the response induced by mesh implants in the abdominal wall and, consequently, affect the outcome of the surgical procedure. Polypropylene meshes were implanted in the peritoneal side of the abdominal wall in wild-type and NOS2-deficient (NOS2(-/-)) mice. After 15 days tissues around the mesh implant were collected, and inflammatory markers (the cytokine interleukin 1 beta (IL-1 beta) and NO) and tissue remodeling (collagen and metalloproteinases (MMP) 2 and 9) were analyzed. The lack of NOS2-derived NO induced a higher incidence of visceral adhesions at the mesh implantation site compared with wild-type mice that underwent the same procedure (P < 0.05). Additionally, higher levels of IL-1 beta were present in the mesh-implanted NOS2(-/-) animals compared with control and wild-type mice. Mesh implantation induced collagen I and III deposition, but in smaller amounts in NOS2(-/-) mice. MMP-9 activity after the surgical procedure was similarly increased in both groups. Conversely, MMP-2 activity was unchanged in mesh-implanted wild-type mice, but was significantly increased in NOS2(-/-) mice (P < 0.01), due to decreased S-nitrosylation of the enzyme in these animals. We conclude that NOS2-derived NO is crucial for an adequate response to and integration of polypropylene mesh implants in the peritoneum. NO deficiency results in a prolonged inflammatory reaction to the mesh implant, and reduced collagen deposition may contribute to an increased incidence of visceral adhesions. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pathogenic mechanisms involved in migraine are complex and not completely clarified. Because there is evidence for the involvement of nitric oxide (NO) in migraine pathophysiology, candidate gene approaches focusing on genes affecting the endothelial function have been studied including the genes encoding endothelial NO synthase (eNOS), inducible NO synthase (iNOS), and vascular endothelial growth factor (VEGF). However, investigations on gene-gene interactions are warranted to better elucidate the genetic basis of migraine. This study aimed at characterizing interactions among nine clinically relevant polymorphisms in eNOS (T-786C/rs2070744, the 27 bp VNTR in intron 4, the Glu298Asp/rs1799983, and two additional tagSNPs rs3918226 and rs743506), iNOS (C(-1026)A/rs2779249 and G2087A/rs2297518), and VEGF (C(-2578)A/rs699947 and G(-634)C/rs2010963) in migraine patients and control group. Genotypes were determined by real-time polymerase chain reaction using the Taqman(A (R)) allele discrimination assays or PCR and fragment separation by electrophoresis in 99 healthy women without migraine (control group) and in 150 women with migraine divided into two groups: 107 with migraine without aura and 43 with aura. The multifactor dimensionality reduction method was used to detect and characterize gene-gene interactions. We found a significant interaction between eNOS rs743506 and iNOS 2087G/A polymorphisms in migraine patients compared to control group (P < 0.05), suggesting that this combination affect the susceptibility to migraine. Further studies are needed to determine the molecular mechanisms explaining this interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activation of the transient receptor potential vanilloid type 1 channel (TRPV1) has been correlated with oxidative and nitrosative stress and cell death in the nervous system. Our previous results indicate that TRPV1 activation in the adult retina can lead to constitutive and inducible nitric oxide synthase-dependent protein nitration and apoptosis. In this report, we have investigated the potential effects of TRPV1 channel activation on nitric oxide synthase (NOS) expression and function, and the putative participation of ionotropic glutamate receptors in retinal TRPV1-induced protein nitration, lipid peroxidation, and DNA fragmentation. Intravitreal injections of the classical TRPV1 agonist capsaicin up-regulated the protein expression of the inducible and endothelial NOS isoforms. Using 4,5-diaminofluorescein diacetate for nitric oxide (NO) imaging, we found that capsaicin also increased the production of NO in retinal blood vessels. Processes and perikarya of TRPV1-expressing neurons in the inner nuclear layer of the retina were found in the vicinity of nNOS-positive neurons, but those two proteins did not colocalize. Retinal explants exposed to capsaicin presented high protein nitration, lipid peroxidation, and cell death, which were observed in the inner nuclear and plexiform layers and in ganglion cells. This effect was partially blocked by AP-5, a NMDA glutamate receptor antagonist, but not by CNQX, an AMPA/kainate receptor antagonist. These data support a potential role for TRPV1 channels in physiopathological retinal processes mediated by NO, which at least in part involve glutamate release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoarthritis due to cranial cruciate ligament (CCL) rupture or hip dysplasia is one of the most important causes of chronic lameness in dogs. This study aimed at comparing nitric oxide (NO) production by the CCL with that of the femoral head ligament (FHL) and the medial collateral ligament (MCL), and investigating the pathway of NO production and the concomitant metalloproteinase (MMP) activity in the presence or absence of an inflammatory stimulus. Ligaments of normal dogs were subjected to different stimuli, and NO and MMP activity from explant culture supernatants were compared. The results showed that in explant cultures of the canine CCL more NO was produced than in those of the other two ligaments. A higher level of NO was produced when CCLs were exposed to the inducible nitric oxide synthase (iNOS)-inducing cocktail TNF/IL-1/LPS, and NO synthesis could be inhibited by both l-NMMA, a general nitric oxide synthase (NOS) inhibitor and l-NIL, a specific iNOS inhibitor. However, a correlation between NO synthesis and iNOS expression levels as determined by immunohistochemistry was not observed. In contrast to CCL, no evidence for iNOS-dependent NO synthesis was observed for MCL and FHL. The CCL produced less MMP than MCL and FHL, and no correlation between MMP and NO could be demonstrated. MMP activity in the CCL increased significantly after 48 h of incubation with the inflammatory stimulus. The results suggest that in canine osteoarthritis NO synthesized by canine CCL plays a more important role in the pathogenesis of osteoarthritis of the stifle than that synthesized by FHL and MCL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of these studies was to investigate the role of nitric oxide (NO) in tumor metastasis. K-1735 Metastatic cells survived in blood circulation to produce experimental lung metastases, whereas nonmetastatic cells did not. After incubation with combination cytokines or lipopolysaccharide (LPS), nonmetastatic cells exhibited high levels of inducible nitric oxide synthase (iNOS) activity and NO production, whereas metastatic cells did not. The production of NO directly correlated with cytotoxic effects of cytokines or LPS. To provide direct evidence for the inverse correlation between the production of endogenous NO and the ability of K-1735 cells to survive in syngeneic mice to produce lung metastases, highly metastatic K-1735 clone 4 cells (C4.P), which express low levels of iNOS, were transfected with a functional iNOS (C4.L8), inactive-mutated iNOS (C4.S2), or neomycin-resistance (C4.Neo) genes in medium containing 3 mM NMA. C4.P, C4.Neo.3, and C4.S2.3 cells were highly metastatic whereas C4.L8.5 cells were not metastatic. The C4.L8.5 cells produced slow growing subcutaneous tumors in nude mice, whereas the other three lines produced fast growing tumors. In vitro studies indicated that the expression of iNOS in C4.L8.5 cells induced apoptosis. Collectively, these data demonstrate that the expression of recombinant iNOS in melanoma cells is associated with apoptosis, suppression of tumorigenicity, and abrogation of metastasis.^ Furthermore, multiple systemic administrations of multilamellar vesicle-liposomes (MLV) containing the lipopeptide CGP 31362 (MLV-31362) or MLV-31362 combined with murine interferon-gamma (IFN-$\gamma$) eradicated the metastases by M5076 reticular cell sarcoma. Tumor regression correlated with iNOS expression within the tumor lesions and with increased NO production. The administration of NMA significantly decreased NO production and diminished the antitumor activities. These data imply that the activation of iNOS can serve as a target for immunotherapeutic agents for treatment of murine reticulum cell sarcoma metastases. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutamate is the major excitatory neurotransmitter in the retina and serves as the synaptic messenger for the three classes of neurons which constitute the vertical pathway--the photoreceptors, bipolar cells and ganglion cells. In addition, the glutamate system has been localized morphologically, pharmacologically as well as molecularly during the first postnatal week of development before synaptogenesis occurs. The role which glutamate plays in the maturing visual system is complex but ranges from mediating developmental neurotoxicity to inducing neurite outgrowth.^ Nitric oxide/cGMP is a novel intercellular messenger which is thought to act in concert with the glutamate system in regulating a variety of cellular processes in the brain as well as retina, most notably neurotoxicity. Several developmental activities including programmed cell death, synapse elimination and synaptic reorganization are possible functions of cellular regulation modulated by nitric oxide as well as glutamate.^ The purpose of this thesis is to (1) biochemically characterize the endogenous pools of glutamate and determine what fraction exists extracellularly; (2) examine the morphological expression of NO producing cells in developing retina; (3) test the functional coupling of the NMDA subtype of glutamate receptor to the NO system by examining neurotoxicity which has roles in both the maturing and adult retina.^ Biochemical sampling of perfusates collected from the photoreceptor surface of ex vivo retina demonstrated that although the total pool of glutamate present at birth is relatively modest, a high percentage resides in extracellular pools. As a result, immature neurons without significant synaptic connections survive and develop in a highly glutamatergic environment which has been shown to be toxic in the adult retina.^ The interaction of the glutamate system with the NO system has been postulated to regulate neuronal survival. We therefore examined the developmental expression of the enzyme responsible for producing NO, nitric oxide synthase (NOS), using an antibody to the constitutive form of NOS found in the brain. The neurons thought to produce the majority of NO in the adult retina, a subpopulation of widefield amacrine cells, were not immunoreactive until the end of the second postnatal week. However, a unique developmental expression was observed in the ganglion cell layer and developing outer nuclear layer of the retina during the first postnatal week. We postulate NO producing neurons may not be present in a mature configuration therefore permitting neuronal survival in a highly glutamatergic microenvironment and allowing NO to play a development-specific role at this time.^ The next set of experiments constituted a functional test of the hypothesis that the absence of the prototypic NO producing cells in developing retina protects immature neurons against glutamate toxicity. An explant culture system developed in order to examine cellular responses of immature and adult neurons to glutamate toxicity showed that immature neurons were affected by NMDA but were less responsive to NMDA and NO mediated toxicity. In contrast, adult explants exhibited significant NMDA toxicity which was attenuated by NMDA antagonists, 2-amino-5-phosphonovaleric acid (APV), dextromethorphan (Dex) and N$\rm\sp{G}$-D-methyl arginine (metARG). These results indicated that pan-retinal neurotoxicity via the NMDA receptor and/or NO activation occurred in the adult retina but was not significant in the neonate. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To investigate the potential of doxycycline to reduce stromelysin and inducible nitric oxide synthase (iNOS) activity in dogs with osteoarthritis (OA) secondary to spontaneous cranial cruciate ligament (CCL) rupture. STUDY DESIGN Prospective, clinical study. ANIMALS Eighty-one dogs with OA secondary to CCL rupture and 54 normal dogs. METHODS Dogs with OA secondary to CCL rupture were divided into 2 groups before surgery. The Doxy-CCl group received 3 to 4 mg/kg doxycycline orally every 24 hours for 7 to 10 days (n = 35). The CCL group received no treatment (n = 46). Synovial fluid, articular cartilage, synovial membrane, and CCL samples were collected during surgery (Doxy-CCL group and CCL group) or immediately after euthanasia from healthy dogs (control group). Synovial fluid samples were examined cytologically. Total nitric oxide (NOt) concentrations were measured in the supernatant of explant cultures of all tissue samples, and stromelysin activity was measured in the supernatant of explant cultures of cartilage. RESULTS NOt concentrations measured in cartilage were significantly lower in the Doxy-CCL group than in the CCL group, but were not different from those measured in the control group. Doxycycline treatment did not have a significant effect on cartilage stromelysin levels. CONCLUSION The findings in this study indicate that doxycycline inhibits NO production in cartilage in dogs with CCL rupture. CLINICAL RELEVANCE Doxycycline may have a role in the treatment of canine OA by inhibiting NO production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS) and interferon-gamma (IFN) activate macrophages and produce nitric oxide (NO) by initiating the expression of inducible Nitric Oxide Synthase (iNOS). Prolonged LPS/IFN-activation results in the death of macrophage-like RAW 264.7 cells and wild-type murine macrophages. This study was implemented to determine how NO contributes to LPS/IFN-induced macrophage death. The iNOS-specific inhibitor L-NIL protected RAW 264.7 cells from LPS/IFN-activated death, supporting a role for NO in the death of LPS/IFN-activated macrophages. A role for iNOS in cell death was confirmed in iNOS-/- macrophages which were resistant to LPS/IFN-induced death. Cell death was accompanied by nuclear condensation, caspase 3 activation, and PARP cleavage, all of which are hallmarks of apoptosis. The involvement of NO in modulating the stress-activated protein kinase (SAPK)/c-jun N-terminal kinase (JNK) signal transduction pathway was examined as a possible mechanism of LPS/IFN-mediated apoptosis. Western analysis demonstrated that NO modifies the phosphorylation profile of JNK and promotes activation of JNK in the mitochondria in RAW 264.7 cells. Inhibition of JNK with sIRNA significantly reduced cell death in RAW 264.7 cells, indicating the participation of the JNK pathway in LPS/IFN-mediated death. JNK has been demonstrated to induce mitochondrial-mediated apoptosis through modulation of Bcl-2 family members. Therefore, the effect of NO on the balance between pro- and anti-apoptotic Bcl-2 family members was examined. In RAW 264.7 cells, Bim was upregulated and phosphorylated by LPS/IFN independently of NO. However, co-immunoprecipitation studies demonstrated that NO promotes the association of Bax with the BimL splice variant. Examination of Bax phosphorylation by metabolic labeling demonstrated that Bax is basally phosphorylated and becomes dephosphorylated upon LPS/IFN treatment. L-NIL inhibited the dephosphorylation of Bax, indicating that Bax dephosphorylation is NO-dependent. NO also mediated LPS/IFN-induced downregulation of Mcl-1, an anti-apoptotic Bcl-2 family member, as demonstrated by Western blotting for Mcl-1 protein expression. Thus, NO contributes to macrophage apoptosis via a JNK-mediated mechanism involving interaction between Bax and Bim, dephosphorylation of Bax, and downregulation of Mcl-1. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms that permit adult tissues to regenerate when injured are not well understood. Initiation of liver regeneration requires the injury-related cytokines, tumor necrosis factor (TNF) α and interleukin (IL) 6, and involves the activation of cytokine-regulated transcription factors such as NF-κβ and STAT3. During regeneration, TNFα and IL-6 promote hepatocyte viability, as well as proliferation, because interventions that inhibit either cytokine not only block hepatocyte DNA synthesis, but also increase liver cell death. These observations suggest that the cytokines induce hepatoprotective factors in the regenerating liver. Given evidence that nitric oxide can prevent TNF-mediated activation of the pro-apoptotic protease caspase 3 and protect hepatocytes from cytokine-mediated death, cytokine-inducible nitric oxide synthase (iNOS) may be an important hepatoprotective factor in the regenerating liver. In support of this hypothesis we report that the hepatocyte proliferative response to partial liver resection is severely inhibited in transgenic mice with targeted disruption of the iNOS gene. Instead, partial hepatectomy is followed by increased caspase 3 activity, hepatocyte death, and liver failure, despite preserved induction of TNFα, IL-6, NF-κβ, and STAT3. These results suggest that during successful tissue regeneration, injury-related cytokines induce factors, such as iNOS and its product, NO, that protect surviving cells from cytokine-mediated death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial growth factor-A (VEGF) is critical for angiogenesis but fails to induce neovascularization in ischemic tissue lesions in mice lacking endothelial nitric oxide synthase (eNOS). VEGF receptor-2 (VEGFR-2) is critical for angiogenesis, although little is known about the precise role of endothelial VEGFR-1 and its downstream effectors in this process. Here we have used a chimeric receptor approach in which the extracellular domain of the epidermal growth factor receptor was substituted for that of VEGFR-1 (EGLT) or VEGFR-2 (EGDR) and transduced into primary cultures of human umbilical vein endothelial cells (HUVECs) using a retroviral system. Activation of HUVECs expressing EGLT or EGDR induced rapid phosphorylation of eNOS at Ser1177, release of NO, and formation of capillary networks, similar to VEGF. Activation of eNOS by VEGFR-1 was dependent on Tyr794 and was mediated via phosphatidylinositol 3-kinase, whereas VEGFR-2 Tyr951 was involved in eNOS activation via phospholipase Cgamma1. Consistent with these findings, the VEGFR-1-specific ligand placenta growth factor-1 activated phosphatidylinositol 3-kinase and VEGF-E, which is selective for VEGFR-2-activated phospholipase Cgamma1. Both VEGFR-1 and VEGFR-2 signal pathways converged on Akt, as dominant-negative Akt inhibited the NO release and in vitro tube formation induced following activation of EGLT and EGDR. The identification Tyr794 of VEGFR-1 as a key residue in this process provides direct evidence of endothelial VEGFR-1 in NO-driven in vitro angiogenesis. These studies provide new sites of modulation in VEGF-mediated vascular morphogenesis and highlight new therapeutic targets for management of vascular diseases.