522 resultados para Nitreto de titânio


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The system built to characterize electrodes and, consequently, deposited fine films are constituted by a hollow cathode that works to discharges and low pressures (approximately 10-3 to 5 mbar), a source DC (0 to 1200 V), a cylindrical camera of closed borossilicato for flanges of stainless steel with an association of vacuum bombs mechanical and spread. In the upper flange it is connected the system of hollow cathode, which possesses an entrance of gas and two entrances for its refrigeration, the same is electrically isolated of the rest of the equipment and it is polarized negatively. In front of the system of hollow cathode there is a movable sample in stainless steel with possibility of moving in the horizontal and vertical. In the vertical, the sample can vary its distance between 0 and 70 mm and, in the horizontal, can leave completely from the front of the hollow cathode. The sample and also the cathode hollow are equipped with cromel-alumel termopares with simultaneous reading of the temperatures during the time of treatment. In this work copper electrodes, bronze, titanium, iron, stainless steel, powder of titanium, powder of titanium and silício, glass and ceramic were used. The electrodes were investigated relating their geometry change and behavior of the plasma of the cavity of hollow cathode and channel of the gas. As the cavity of hollow cathode, the analyzed aspects were the diameter and depth. With the channel of the gas, we verified the diameter. In the two situations, we investigated parameters as flow of the gas, pressure, current and applied tension in the electrode, temperature, loss of mass of the electrode with relationship at the time of use. The flow of gas investigated in the electrodes it was fastened in a work strip from 15 to 6 sccm, the constant pressure of work was among 2.7 to 8 x 10-2 mbar. The applied current was among a strip of work from 0,8 to 0,4 A, and their respective tensions were in a strip from 400 to 220 V. Fixing the value of the current, it was possible to lift the curve of the behavior of the tension with the time of use. That curves esteem in that time of use of the electrode to its efficiency is maximum. The temperatures of the electrodes were in the dependence of that curves showing a maximum temperature when the tension was maximum, yet the measured temperatures in the samples showed to be sensitive the variation of the temperature in the electrodes. An accompaniment of the loss of mass of the electrode relating to its time of use showed that the electrodes that appeared the spherical cavities lost more mass in comparison with the electrodes in that didn't appear. That phenomenon is only seen for pressures of 10-2 mbar, in these conditions a plasma column is formed inside of the channel of the gas and in certain points it is concentrated in form of spheres. Those spherical cavities develop inside of the channel of the gas spreading during the whole extension of the channel of the gas. The used electrodes were cut after they could not be more used, however among those electrodes, films that were deposited in alternate times and the electrodes that were used to deposit films in same times, those films were deposited in the glass substrata, alumina, stainless steel 420, stainless steel 316, silício and steel M2. As the eletros used to deposit films in alternate time as the ones that they were used to deposit in same times, the behavior of the thickness of the film obeyed the curve of the tension with relationship the time of use of the electrode, that is, when the tension was maximum, the thickness of the film was also maximum and when the tension was minimum, the thickness was minimum and in the case where the value of the tension was constant, the thickness of the film tends to be constant. The fine films that were produced they had applications with nano stick, bio-compatibility, cellular growth, inhibition of bacterias, cut tool, metallic leagues, brasagem, pineapple fiber and ornamental. In those films it was investigated the thickness, the adherence and the uniformity characterized by sweeping electronic microscopy. Another technique developed to assist the production and characterization of the films produced in that work was the caloteste. It uses a sphere and abrasive to mark the sample with a cap impression, with that cap form it is possible to calculate the thickness of the film. Through the time of life of the cathode, it was possible to evaluate the rate of waste of its material for the different work conditions. Values of waste rate up to 3,2 x 10-6 g/s were verified. For a distance of the substratum of 11 mm, the deposited film was limited to a circular area of 22 mm diameter mm for high pressures and a circular area of 75 mm for pressure strip. The obtained films presented thickness around 2,1 µm, showing that the discharge of arch of hollow cathode in argon obeys a curve characteristic of the tension with the time of life of the eletrodo. The deposition rate obtained in this system it is of approximately 0,18 µm/min

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microalloyed steels constitute a specific class of steel with low amount of carbon and microalloying elements such as Vanadium (V), Niobium (Nb) and Titanium (Ti). The development and application of microalloyed steels and steels in general are limited to the handling of powders with particles of submicron or nanometer dimensions. Therefore, this work presents an alternative in order to construction of microalloyed steels utilizing the deposition by magnetron sputtering technique as a microalloying element addiction in which Ti nanoparticles are dispersed in an iron matrix. The advantage of that technique in relation to the conventional metallurgical processes is the possibility of uniformly disperse the microalloying elements in the iron matrix. It was carried out deposition of Ti onto Fe powder in high CH4, H2, Ar plasma atmosphere, with two deposition times. After the deposition, the iron powder with nanoparticles of Ti dispersed distributed, were compacted and sintered at 1120 ° C in resistive furnace. Characterization techniques utilized in the samples of powder before and after deposition of Ti were Granulometry, Scanning Electron Microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (DRX). In the case of sintered samples, it was carried out characterization by SEM and Vickers Microhardness assays. The results show which the deposition technique by magnetron sputtering is practicable in the dispersion of particles in iron matrix. The EDX microanalysis detected higher percentages of Ti when the deposition were carried out with the inert gas and when the deposition process was carried out with reactive gas. The presence of titanium in iron matrix was also evidenced by the results of X-ray diffraction peaks that showed shifts in the network matrix. Given these results it can be said that the technique of magnetron sputtering deposition is feasible in the dispersion of nanoparticles of iron matrix in Ti.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The partial fixed prosthodontics restoration is used to rehabilitate form and function of partial or total compromised teeth, having to remain permanently joined to remainder tooth. The most useful material on prosthodontics is the feldspar porcelain, commercialized as aluminosilicate powders. Dental porcelains are presented with limited mechanical properties to rehabilitate extensive spaces. The association with Ni-Cr metallic systems (metal-ceramic system) allows that the metallic substructure compensates the fragile porcelain nature, preserving the thermal insulation and aesthetics desirable, as well as reducing the possibility of cracking during matication efforts. Cohesive flaws by low mechanical strength connect the metallic substructure to the oral environment, characterized by a electrolytic solution (saliva), by aggressive temperature, pH cyclic changes and mechanical requests. This process results on ionic liberation that could promote allergic or inflammatory responses, and/or clinical degradation of ceramometal system. The aim of this study was to evaluate the presence of an intermediate titanium layer on the microscopic fracture behavior of porcelains on ceramometal systems. Plasma deposition of titanium films result in regular passivating oxide layers which act as barriers to protect the metallic substrate against the hazardous effects of corrosive saliva. Tribocorrosion tests were performed to simulate the oral environment and mechanical stress, making it possible the early detection of crack formation and growth on metal-ceramic systems, which estimate the adherence between the compounds of this system. Plain samples consisting of dental feldspar porcelain deposited either onto metallic substrates or titanium films were fired and characterized by scanning electron microscopy. The result showed that the titanium film improved the adherence of the system compared to conventional metal-ceramic interfaces, thus holding crack propagation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nickel alloys are frequently used in applications that require resistance at high temperatures associated with resistance to corrosion. Alloys of Ni-Si-C can be obtained by means of powder metallurgy in which powder mixtures are made of metallic nickel powders with additions of various alloying carriers for such were used in this study SiC, Si3N4 or Si metal with graphite. Carbonyl Ni powder with mean particle size of 11 mM were mixed with 3 wt% of SiC powders with an average particle size of 15, 30 and 50 μm and further samples were obtained containing 4 to 5% by mass of SiC with average particle size of 15 μm. Samples were also obtained by varying the carrier alloy, these being Si3N4 powder with graphite, with average particle size of 1.5 and 5 μm, respectively. As a metallic Si graphite with average particle size of 12.5 and 5 μm, respectively. The reference material used was nickel carbonyl sintered without adding carriers. Microstructural characterization of the alloys was made by optical microscopy and scanning electron microscopy with semi-quantitative chemical analysis. We determined the densities of the samples and measurement of microhardness. We studied the dissociation of carriers alloy after sintering at 1200 ° C for 60 minutes. Was evaluated also in the same sintering conditions, the influence of the variation of average particle size of the SiC carrier to the proportion of 3% by mass. Finally, we studied the influence of variation of the temperatures of sintering at 950, 1080 and 1200 ° C without landing and also with heights of 30, 60, 120 and 240 minutes for sintering where the temperature was 950 °C. Dilatometry curves showed that the SiC sintered Ni favors more effectively than other carriers alloy analyzed. SiC with average particle size of 15 μm active sintering the alloy more effectively than other SiC used. However, with the chemical and morphological analyzes for all leagues, it was observed that there was dissociation of SiC and Si3N4, as well as diffusion of Si in Ni matrix and carbon cluster and dispersed in the matrix, which also occurred for the alloys with Si carriers and metallic graphite. So the league that was presented better results containing Si Ni with graphite metallic alloy as carriers, since this had dispersed graphite best in the league, reaching the microstructural model proposed, which is necessary for material characteristic of solid lubricant, so how we got the best results when the density and hardness of the alloy

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study it was used two metallic oxides, Ta2O5 and TiO2, in order to obtain metallic powders of Ta and Ti through aluminothermic reduction ignited by plasma. Ta2O5 and TiO2 powders were mixed with Al in a planetary mill, using different milling times. A thermal analysis study (DTA and TG) was carried out, in order to know the temperature to react both the mixtures. Then, these mixtures were submitted to a hollow cathode discharge, where they were reacted using aluminothermic reduction ignited by plasma. The product obtained was characterized by XRD and SEM, where it was proven the possibility of producing these metallic particles, different from the conventional process, where metallic ingots are obtained. It was verified that the aluminothermic reduction ignited by plasma is able to produce metallic powders of Ta and Ti, and a higher efficiency was observed to the process with Ta2O5-Al mixtures. Among different microstructural aspects observed, it can be noted the presence of metallic nanoparticles trapped into an Al2O3 matrix, besides acicular structures (titanium) and dendritic structures (tantalum), which are a product characteristic from a fast cooling

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent decades have seen a sharp growth in the study area of nanoscience and nanotechnology and is included in this area, the study of nanocomposites with self-cleaning properties. Since titanium dioxide (TiO2) has high photocatalytic activity and also antimicrobial, self-cleaning surfaces in your application has been explored. In this study a comparison was made between two synthesis routes to obtain TiO2 nanoparticles by hydrothermal method assisted by microwave. And after analysis of XRD and SEM was considered the best material for use in nanocomposites. It was deposited nanocomposite film of poly (dimethyl siloxane) (PDMS) with 0.5, 1, 1.5 and 2% by weight of nanoparticles of titanium dioxide (TiO2) by the spraying method. The nanocomposite was diluted with hexane and the suspension was deposited onto glass substrate, followed by curing in an oven with forced air circulation. The photocatalytic activity of the nanocomposite impregnated with methylene blue was evaluated by UV- vis spectroscopy from the intensity variation of absorption main peak at 660nm with time of exposure to the UV chamber. Changes in the contact angle and microhardness were analyzed before and after UV aging test. The effect of ultraviolet radiation on the chemical structure of the PDMS matrix was evaluated by spectrophotometry Fourier transform infrared (FTIR).The results indicated that the addition of TiO2 nanoparticles in the coating PDMS gave high photocatalytic activity in the decomposition of methylene blue, an important characteristic for the development of self-cleaning coatings

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Rio do Peixe Basin represents a main basin of northeastern Brazil and pioneering work positioned the rocks of this basin in the Early Cretaceous. However, a recent study, based on integrated pollen analysis from three wells, found an unprecedented siliciclastic sedimentary section, in the region, of early Devonian age. Therefore, the present study aims a detailed petrographic and petrological analysis of this devonian section, in the Rio do Peixe Basin and proposes a diagenetic evolution, to understand the characteristics of the porous system, identify the main reservoir petrofacies with the main factors impacting on the quality of these rocks as reservoirs and a quick study on the provenance of this section. The petrographic study was based on samples obtained from subsurface and surface. The diagenetic evolution of petrofacies and its identification were based only on subsurface samples and the study of provenance was based on surface samples. The thin sections were prepared from sandstones, pelites and sandstones intercalated with pelites. The original detrital composition for this section is arcosean and the main diagenetic processes that affected these rocks occur in various depths and different conditions, which resulted in extensive diagenetic variety. The following processes were identified: early fracture and healing of grains; albitization of K-feldspar and plagioclase; siderite; precipitation of silica and feldspar; mechanical infiltration of clay and its transformation to illite/esmectite and illite; autigenesis of analcime; dissolution; autigenesis of chlorite; dolomite/ferrous dolomite/anquerite; apatite; calcite; pyrite; titanium minerals and iron oxide-hidroxide. The occurrence of a recently discovered volcanism, in the Rio do Peixe Basin, may have influenced the diagenetic evolution of this section. Three diagenetic stages affected the Devonian section: eo, meso and telodiagenesis. This section is compositionally quite feldspathic, indicating provenance from continental blocks, between transitional continental and uplift of the basement. From this study, we observed a wide heterogeneity in the role of the studied sandstones as reservoirs. Seven petrofacies were identified, taking into account the main diagenetic constituent responsible for the reduction of porosity. It is possible that the loss of original porosity was influenced by intense diagenesis in these rocks, where the main constituent for the loss of porosity are clays minerals, oxides and carbonate cement (calcite and dolomite)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inorganic actives, represented mainly by microfine zinc oxide and titanium dioxide, have shown great potential to protect against large UV spectrum. The aim of this study is the development, characterization and analysis of stability in the short term of microemulsions containing inorganic fotoprotection agents. The microemulsions identified by the phases diagram containing the metallic oxides were produced by two different methods and subjected to the centrifugation test and thermal stress cycles, and subsequently characterized by macroscopic evaluation, test dilution, electrical conductivity, pH, particle size, and zeta potential. This study highlights the influence of the metal oxides addition in the structure and distribution of micelles in the microemulsions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conversion of solar energy in electric with photo-voltaic cells has been carried through exclusively with devices of semiconducting junction. To put this situation comes moving for better in them last years, thanks to a new technology of production of known solar cells as Dye Solar Cell. This proposal aims at to develop a DSC having as dye lavonoides of the Capsicum frutescens (malagueta pepper). Front is considered to evaluate the photo-voltaic parameters varies it regions of the visible specter, as well as a good efficiency of conversion

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years there has been a significant growth in technologies that modify implant surfaces, reducing healing time and allowing their successful use in areas with low bone density. One of the most widely used techniques is plasma nitration, applied with excellent results in titanium and its alloys, with greater frequency in the manufacture of hip, ankle and shoulder implants. However, its use in dental implants is very limited due to high process temperatures (between 700 C o and 800 C o ), resulting in distortions in these geometrically complex and highly precise components. The aim of the present study is to assess osseointegration and mechanical strength of grade II nitrided titanium samples, through configuration of hollow cathode discharge. Moreover, new formulations are proposed to determine the optimum structural topology of the dental implant under study, in order to perfect its shape, make it efficient, competitive and with high definition. In the nitriding process, the samples were treated at a temperature of 450 C o and pressure of 150 Pa , during 1 hour of treatment. This condition was selected because it obtains the best wettability results in previous studies, where different pressure, temperature and time conditions were systematized. The samples were characterized by X-ray diffraction, scanning electron microscope, roughness, microhardness and wettability. Biomechanical fatigue tests were then conducted. Finally, a formulation using the three dimensional structural topology optimization method was proposed, in conjunction with an hadaptive refinement process. The results showed that plasma nitriding, using the hollow cathode discharge technique, caused changes in the surface texture of test specimens, increases surface roughness, wettability and microhardness when compared to the untreated sample. In the biomechanical fatigue test, the treated implant showed no flaws, after five million cycles, at a maximum fatigue load of 84.46 N. The results of the topological optimization process showed well-defined optimized layouts of the dental implant, with a clear distribution of material and a defined edge

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanometric powders have special features that usually result in new properties, originating applications or expanding them in various fields of knowledge. Because having a high area/volume ratio, phenomena such as superficial strength of adsorption becomes greater than the weight of the powder which makes more difficult its handling. The high power of agglomeration of these powders requires study and development of equipments to enable its management into the plasma torch. The objective of this work is to develop a powder feeder which can solve the mainly problems about insertion of powder into the thermal spray developed in the laboratory of plasmas, which are carried out with plasma torch arc not transferred (plasma spray). Therefore, it was made a aluminum s powder feeder and tests were performed to verify their operation and determine its rate of deposition by spraying powders of niobium pentoxide (Nb2O5) and titanium dioxide (TiO2) with particle sizes less than 250 mesh (<0.063 mm). We used masses of 0.5 g - 1.0 g and 1.5 g of each powder in tests lasting 15 seconds - 20 to 25 seconds for each mass. The tests were performed in two ways: at atmospheric pressure using argon gas with a flow of 9 l / min as carrier gas and through a Venturi pipe also using argon gas with a flow of 9 l / min as carrier gas and with a flow of 20 l/min as the feed gas passing through the Venturi pipe. The powder feeder developed in this paper is very easy to be handling and building, resulting in feeding rate of 0.25 cm3/min - 1.37 cm3/min. The TiO2 showed higher feeding rates than the Nb2O5 in all tests, and the best rates were obtained with tests using mass 1.5 g and time of 15 seconds, reaching feeding rate of 1.37 cm3/min. The flow of feed had low interference in feeding rate during the tests

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considering the constant evolution of technology in growth and the need for production techniques in the ceramics area to move forward together, we sought in this study, the research and development of polymeric precursor method to obtain inorganic ceramic pigments. Method that provides quality to obtain the precursor powders of oxides and pigments at the same time, offers time and cost advantages, such as reproducibility, purity and low temperature heat treatment, control of stoichiometry. This work used chromium nitrate and iron nitrate as precursors. The synthesis is based on the dissolution of citric acid as a complexing agent, addition of metal oxides, such as ion chromophores; polymerization with ethylene glycol and doping with titanium oxide. Passing through precalcination, breakdown, thermal treatments at different temperatures of calcination (700 to 1100 oC), resulting in pigments: green for chromium oxide deposited on TiO2 (CrTiO3) and orange for iron oxide deposited on TiO2 ( FeTiO3). Noticing an increase of opacity with increasing temperature. Were performed thermal analysis (TG and ATD) in order to evaluate its thermodecomposition. The powders were also characterized by techniques such as XRD, revealing the formation of crystalline phases such as iron titanate (FeTiO3) and chrome titanate (CrTiO3), SEM, demonstrating formation of rounded particles for both oxides and Spectroscopy in the UV-Visible Region, verifying the potential variation and chromaticity os pigments. Thus, the synthesized oxides were within the requirements to be applied as pigments and shown to be possible to propose its use in ceramic materials

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we used the plasma as a source of energy in the process of carbothermic reduction of rutile ore (TiO2). The rutile and graphite powders were milled for 15 h and placed in a hollow cathode discharge produced by in order to obtain titanium carbonitride directly from the reaction, was verified the influence of processing parameters of plasma temperature and time in the synthesis of TiCN. The reaction was carried out at 600, 700 and 800˚C for 3 to 4 hours in an atmosphere of nitrogen and argon. During all reactions was monitored by plasma technique of optical emission spectroscopy (EEO) to check the active species present in the process of carbothermal reduction of TiO2. The powder obtained after the reactions were characterized by the techniques of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The technique of EEO were detected in all reactions the spectra CO and NO, and these gas-phase resulting from the reduction of TiO2. The results of X-ray diffraction confirmed the reduction, where for all conditions studied there was evidence of early reduction of TiO2 through the emergence of intermediate oxides. In the samples reduced at 600 and 700˚C, there was only the phase Ti6O11, those reduced to 800˚C appeared Ti5O9 phases, and Ti6O11 Ti7O13, confirming that the carbothermal reduction in plasma, a reduction of the ore rutile (TiO2) in a series of intermediate titanium oxide (TinO2n-1) where n varies between 5 and 10

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research for better performance materials in biomedical applications are constants. Thus recent studies aimed at the development of new techniques for modification of surfaces. The low pressure plasma has been highlighted for its versatility and for being environmentally friendly, achieving good results in the modification of physic chemical properties of materials. However, it is requires an expensive vacuum system and cannot able to generate superficial changes in specific regions. Furthermore, it is limits their use in polymeric materials and sensitive terms due to high process temperatures. Therefore, new techniques capable of generating cold plasma at atmospheric pressure (APPJ) were created. In order to perform surface treatments on biomaterials in specific regions was built a prototype capable of generating a cold plasma jet. The prototype plasma generator consists of a high voltage source, a support arm, sample port and a nozzle through which the ionized argon. The device was formed to a dielectric tube and two electrodes. This work was varied some parameters such as position between electrodes, voltage and electrical frequency to verify the behavior of glow discharges. The disc of titanium was polished and there was a surface modification. The power consumed, length, intensity and surface modifications of titanium were analyzed. The energy consumed during the discharges was observed by the Lissajous figure method. To check the length of the jets was realized with Image Pro Plus software. The modifications of the titanium surfaces were observed by optical microscopy (OM ) and atomic force microscopy (AFM ). The study showed that variations of the parameters such as voltage, frequency and geometric position between the electrodes influence the formation of the plasma jet. It was concluded that the plasma jet near room temperature and atmospheric pressure was able to cause modifications in titanium surface